Source code for colour.adaptation.cie1994

"""
CIE 1994 Chromatic Adaptation Model
===================================

Define the *CIE 1994* chromatic adaptation model objects:

-   :func:`colour.adaptation.chromatic_adaptation_CIE1994`

References
----------
-   :cite:`CIETC1-321994b` : CIE TC 1-32. (1994). CIE 109-1994 A Method of
    Predicting Corresponding Colours under Different Chromatic and Illuminance
    Adaptations. Commission Internationale de l'Eclairage.
    ISBN:978-3-900734-51-0
"""

from __future__ import annotations

import numpy as np

from colour.adaptation import CAT_VON_KRIES
from colour.algebra import sdiv, sdiv_mode, spow, vecmul
from colour.hints import ArrayLike, NDArrayFloat
from colour.utilities import (
    as_float_array,
    from_range_100,
    to_domain_100,
    tsplit,
    tstack,
    usage_warning,
)

__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "MATRIX_XYZ_TO_RGB_CIE1994",
    "MATRIX_RGB_TO_XYZ_CIE1994",
    "chromatic_adaptation_CIE1994",
    "XYZ_to_RGB_CIE1994",
    "RGB_to_XYZ_CIE1994",
    "intermediate_values",
    "effective_adapting_responses",
    "beta_1",
    "beta_2",
    "exponential_factors",
    "K_coefficient",
    "corresponding_colour",
]

MATRIX_XYZ_TO_RGB_CIE1994: NDArrayFloat = CAT_VON_KRIES
"""
*CIE 1994* colour appearance model *CIE XYZ* tristimulus values to cone
responses matrix.
"""

MATRIX_RGB_TO_XYZ_CIE1994: NDArrayFloat = np.linalg.inv(MATRIX_XYZ_TO_RGB_CIE1994)
"""
*CIE 1994* colour appearance model cone responses to *CIE XYZ* tristimulus
values matrix.
"""


[docs] def chromatic_adaptation_CIE1994( XYZ_1: ArrayLike, xy_o1: ArrayLike, xy_o2: ArrayLike, Y_o: ArrayLike, E_o1: ArrayLike, E_o2: ArrayLike, n: ArrayLike = 1, ) -> NDArrayFloat: """ Adapt given stimulus *CIE XYZ_1* tristimulus values from test viewing conditions to reference viewing conditions using *CIE 1994* chromatic adaptation model. Parameters ---------- XYZ_1 *CIE XYZ* tristimulus values of test sample / stimulus. xy_o1 Chromaticity coordinates :math:`x_{o1}` and :math:`y_{o1}` of test illuminant and background. xy_o2 Chromaticity coordinates :math:`x_{o2}` and :math:`y_{o2}` of reference illuminant and background. Y_o Luminance factor :math:`Y_o` of achromatic background as percentage normalised to domain [18, 100] in **'Reference'** domain-range scale. E_o1 Test illuminance :math:`E_{o1}` in :math:`cd/m^2`. E_o2 Reference illuminance :math:`E_{o2}` in :math:`cd/m^2`. n Noise component in fundamental primary system. Returns ------- :class:`numpy.ndarray` Adapted *CIE XYZ_2* tristimulus values of test stimulus. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``XYZ_1`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ | ``Y_o`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``XYZ_2`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`CIETC1-321994b` Examples -------- >>> XYZ_1 = np.array([28.00, 21.26, 5.27]) >>> xy_o1 = np.array([0.4476, 0.4074]) >>> xy_o2 = np.array([0.3127, 0.3290]) >>> Y_o = 20 >>> E_o1 = 1000 >>> E_o2 = 1000 >>> chromatic_adaptation_CIE1994(XYZ_1, xy_o1, xy_o2, Y_o, E_o1, E_o2) ... # doctest: +ELLIPSIS array([ 24.0337952..., 21.1562121..., 17.6430119...]) """ XYZ_1 = to_domain_100(XYZ_1) Y_o = as_float_array(to_domain_100(Y_o)) E_o1 = as_float_array(E_o1) E_o2 = as_float_array(E_o2) if np.any(Y_o < 18) or np.any(Y_o > 100): usage_warning( '"Y_o" luminance factor must be in [18, 100] domain, ' "unpredictable results may occur!" ) RGB_1 = XYZ_to_RGB_CIE1994(XYZ_1) xez_1 = intermediate_values(xy_o1) xez_2 = intermediate_values(xy_o2) RGB_o1 = effective_adapting_responses(xez_1, Y_o, E_o1) RGB_o2 = effective_adapting_responses(xez_2, Y_o, E_o2) bRGB_o1 = exponential_factors(RGB_o1) bRGB_o2 = exponential_factors(RGB_o2) K = K_coefficient(xez_1, xez_2, bRGB_o1, bRGB_o2, Y_o, n) RGB_2 = corresponding_colour(RGB_1, xez_1, xez_2, bRGB_o1, bRGB_o2, Y_o, K, n) XYZ_2 = RGB_to_XYZ_CIE1994(RGB_2) return from_range_100(XYZ_2)
def XYZ_to_RGB_CIE1994(XYZ: ArrayLike) -> NDArrayFloat: """ Convert from *CIE XYZ* tristimulus values to cone responses. Parameters ---------- XYZ *CIE XYZ* tristimulus values. Returns ------- :class:`numpy.ndarray` Cone responses. Examples -------- >>> XYZ = np.array([28.00, 21.26, 5.27]) >>> XYZ_to_RGB_CIE1994(XYZ) # doctest: +ELLIPSIS array([ 25.8244273..., 18.6791422..., 4.8390194...]) """ return vecmul(MATRIX_XYZ_TO_RGB_CIE1994, XYZ) def RGB_to_XYZ_CIE1994(RGB: ArrayLike) -> NDArrayFloat: """ Convert from cone responses to *CIE XYZ* tristimulus values. Parameters ---------- RGB Cone responses. Returns ------- :class:`numpy.ndarray` *CIE XYZ* tristimulus values. Examples -------- >>> RGB = np.array([25.82442730, 18.67914220, 4.83901940]) >>> RGB_to_XYZ_CIE1994(RGB) # doctest: +ELLIPSIS array([ 28. , 21.26, 5.27]) """ return vecmul(MATRIX_RGB_TO_XYZ_CIE1994, RGB) def intermediate_values(xy_o: ArrayLike) -> NDArrayFloat: """ Return the intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. Parameters ---------- xy_o Chromaticity coordinates :math:`x_o` and :math:`y_o` of whitepoint. Returns ------- :class:`numpy.ndarray` Intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. Examples -------- >>> xy_o = np.array([0.4476, 0.4074]) >>> intermediate_values(xy_o) # doctest: +ELLIPSIS array([ 1.1185719..., 0.9329553..., 0.3268087...]) """ x_o, y_o = tsplit(xy_o) # Computing :math:`\\xi` :math:`\\eta`, :math:`\\zeta` values. xi = (0.48105 * x_o + 0.78841 * y_o - 0.08081) / y_o eta = (-0.27200 * x_o + 1.11962 * y_o + 0.04570) / y_o zeta = (0.91822 * (1 - x_o - y_o)) / y_o xez = tstack([xi, eta, zeta]) return xez def effective_adapting_responses( xez: ArrayLike, Y_o: ArrayLike, E_o: ArrayLike ) -> NDArrayFloat: """ Derive the effective adapting responses in the fundamental primary system of the test or reference field. Parameters ---------- xez Intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. Y_o Luminance factor :math:`Y_o` of achromatic background as percentage normalised to domain [18, 100] in **'Reference'** domain-range scale. E_o Test or reference illuminance :math:`E_{o}` in lux. Returns ------- :class:`numpy.ndarray` Effective adapting responses. Examples -------- >>> xez = np.array([1.11857195, 0.93295530, 0.32680879]) >>> E_o = 1000 >>> Y_o = 20 >>> effective_adapting_responses(xez, Y_o, E_o) # doctest: +ELLIPSIS array([ 71.2105020..., 59.3937790..., 20.8052937...]) """ xez = as_float_array(xez) Y_o = as_float_array(Y_o) E_o = as_float_array(E_o) RGB_o = ((Y_o[..., None] * E_o[..., None]) / (100 * np.pi)) * xez return RGB_o def beta_1(x: ArrayLike) -> NDArrayFloat: """ Compute the exponent :math:`\\beta_1` for the middle and long-wavelength sensitive cones. Parameters ---------- x Middle and long-wavelength sensitive cone response. Returns ------- :class:`numpy.ndarray` Exponent :math:`\\beta_1`. Examples -------- >>> beta_1(318.323316315) # doctest: +ELLIPSIS 4.6106222... """ x_p = spow(x, 0.4495) return (6.469 + 6.362 * x_p) / (6.469 + x_p) def beta_2(x: ArrayLike) -> NDArrayFloat: """ Compute the exponent :math:`\\beta_2` for the short-wavelength sensitive cones. Parameters ---------- x Short-wavelength sensitive cone response. Returns ------- :class:`numpy.ndarray` Exponent :math:`\\beta_2`. Examples -------- >>> beta_2(318.323316315) # doctest: +ELLIPSIS 4.6522416... """ x_p = spow(x, 0.5128) return 0.7844 * (8.414 + 8.091 * x_p) / (8.414 + x_p) def exponential_factors(RGB_o: ArrayLike) -> NDArrayFloat: """ Return the chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)` of given cone responses. Parameters ---------- RGB_o Cone responses. Returns ------- :class:`numpy.ndarray` Chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)`. Examples -------- >>> RGB_o = np.array([318.32331631, 318.30352317, 318.23283482]) >>> exponential_factors(RGB_o) # doctest: +ELLIPSIS array([ 4.6106222..., 4.6105892..., 4.6520698...]) """ R_o, G_o, B_o = tsplit(RGB_o) bR_o = beta_1(R_o) bG_o = beta_1(G_o) bB_o = beta_2(B_o) bRGB_o = tstack([bR_o, bG_o, bB_o]) return bRGB_o def K_coefficient( xez_1: ArrayLike, xez_2: ArrayLike, bRGB_o1: ArrayLike, bRGB_o2: ArrayLike, Y_o: ArrayLike, n: ArrayLike = 1, ) -> NDArrayFloat: """ Compute the coefficient :math:`K` for correcting the difference between the test and references illuminances. Parameters ---------- xez_1 Intermediate values :math:`\\xi_1`, :math:`\\eta_1`, :math:`\\zeta_1` for the test illuminant and background. xez_2 Intermediate values :math:`\\xi_2`, :math:`\\eta_2`, :math:`\\zeta_2` for the reference illuminant and background. bRGB_o1 Chromatic adaptation exponential factors :math:`\\beta_1(R_{o1})`, :math:`\\beta_1(G_{o1})` and :math:`\\beta_2(B_{o1})` of test sample. bRGB_o2 Chromatic adaptation exponential factors :math:`\\beta_1(R_{o2})`, :math:`\\beta_1(G_{o2})` and :math:`\\beta_2(B_{o2})` of reference sample. Y_o Luminance factor :math:`Y_o` of achromatic background as percentage normalised to domain [18, 100] in **'Reference'** domain-range scale. n Noise component in fundamental primary system. Returns ------- :class:`numpy.ndarray` Coefficient :math:`K`. Examples -------- >>> xez_1 = np.array([1.11857195, 0.93295530, 0.32680879]) >>> xez_2 = np.array([1.00000372, 1.00000176, 0.99999461]) >>> bRGB_o1 = np.array([3.74852518, 3.63920879, 2.78924811]) >>> bRGB_o2 = np.array([3.68102374, 3.68102256, 3.56557351]) >>> Y_o = 20 >>> K_coefficient(xez_1, xez_2, bRGB_o1, bRGB_o2, Y_o) 1.0 """ xi_1, eta_1, _zeta_1 = tsplit(xez_1) xi_2, eta_2, _zeta_2 = tsplit(xez_2) bR_o1, bG_o1, _bB_o1 = tsplit(bRGB_o1) bR_o2, bG_o2, _bB_o2 = tsplit(bRGB_o2) Y_o = as_float_array(Y_o) n = as_float_array(n) K = spow((Y_o * xi_1 + n) / (20 * xi_1 + n), (2 / 3) * bR_o1) / spow( (Y_o * xi_2 + n) / (20 * xi_2 + n), (2 / 3) * bR_o2 ) K *= spow((Y_o * eta_1 + n) / (20 * eta_1 + n), (1 / 3) * bG_o1) / spow( (Y_o * eta_2 + n) / (20 * eta_2 + n), (1 / 3) * bG_o2 ) return K def corresponding_colour( RGB_1: ArrayLike, xez_1: ArrayLike, xez_2: ArrayLike, bRGB_o1: ArrayLike, bRGB_o2: ArrayLike, Y_o: ArrayLike, K: ArrayLike, n: ArrayLike = 1, ) -> NDArrayFloat: """ Compute the corresponding colour cone responses of given test sample cone responses :math:`RGB_1`. Parameters ---------- RGB_1 Test sample cone responses :math:`RGB_1`. xez_1 Intermediate values :math:`\\xi_1`, :math:`\\eta_1`, :math:`\\zeta_1` for the test illuminant and background. xez_2 Intermediate values :math:`\\xi_2`, :math:`\\eta_2`, :math:`\\zeta_2` for the reference illuminant and background. bRGB_o1 Chromatic adaptation exponential factors :math:`\\beta_1(R_{o1})`, :math:`\\beta_1(G_{o1})` and :math:`\\beta_2(B_{o1})` of test sample. bRGB_o2 Chromatic adaptation exponential factors :math:`\\beta_1(R_{o2})`, :math:`\\beta_1(G_{o2})` and :math:`\\beta_2(B_{o2})` of reference sample. Y_o Luminance factor :math:`Y_o` of achromatic background as percentage normalised to domain [18, 100] in **'Reference'** domain-range scale. K Coefficient :math:`K`. n Noise component in fundamental primary system. Returns ------- :class:`numpy.ndarray` Corresponding colour cone responses of given test sample cone responses. Examples -------- >>> RGB_1 = np.array([25.82442730, 18.67914220, 4.83901940]) >>> xez_1 = np.array([1.11857195, 0.93295530, 0.32680879]) >>> xez_2 = np.array([1.00000372, 1.00000176, 0.99999461]) >>> bRGB_o1 = np.array([3.74852518, 3.63920879, 2.78924811]) >>> bRGB_o2 = np.array([3.68102374, 3.68102256, 3.56557351]) >>> Y_o = 20 >>> K = 1 >>> corresponding_colour(RGB_1, xez_1, xez_2, bRGB_o1, bRGB_o2, Y_o, K) ... # doctest: +ELLIPSIS array([ 23.1636901..., 20.0211948..., 16.2001664...]) """ R_1, G_1, B_1 = tsplit(RGB_1) xi_1, eta_1, zeta_1 = tsplit(xez_1) xi_2, eta_2, zeta_2 = tsplit(xez_2) bR_o1, bG_o1, bB_o1 = tsplit(bRGB_o1) bR_o2, bG_o2, bB_o2 = tsplit(bRGB_o2) Y_o = as_float_array(Y_o) K = as_float_array(K) n = as_float_array(n) def RGB_c( x_1: NDArrayFloat, x_2: NDArrayFloat, y_1: NDArrayFloat, y_2: NDArrayFloat, z: NDArrayFloat, n: NDArrayFloat, ) -> NDArrayFloat: """Compute the corresponding colour cone responses component.""" with sdiv_mode(): return (Y_o * x_2 + n) * spow(K, sdiv(1, y_2)) * spow( (z + n) / (Y_o * x_1 + n), sdiv(y_1, y_2) ) - n R_2 = RGB_c(xi_1, xi_2, bR_o1, bR_o2, R_1, n) G_2 = RGB_c(eta_1, eta_2, bG_o1, bG_o2, G_1, n) B_2 = RGB_c(zeta_1, zeta_2, bB_o1, bB_o2, B_1, n) RGB_2 = tstack([R_2, G_2, B_2]) return RGB_2