"""
Hellwig and Fairchild (2022) Colour Appearance Model
====================================================
Define the *Hellwig and Fairchild (2022)* colour appearance model objects:
- :class:`colour.appearance.InductionFactors_Hellwig2022`
- :attr:`colour.VIEWING_CONDITIONS_HELLWIG2022`
- :class:`colour.CAM_Specification_Hellwig2022`
- :func:`colour.XYZ_to_Hellwig2022`
- :func:`colour.Hellwig2022_to_XYZ`
References
----------
- :cite:`Fairchild2022` : Fairchild, M. D., & Hellwig, L. (2022). Private
Discussion with Mansencal, T.
- :cite:`Hellwig2022` : Hellwig, L., & Fairchild, M. D. (2022). Brightness,
lightness, colorfulness, and chroma in CIECAM02 and CAM16. Color Research
& Application, col.22792. doi:10.1002/col.22792
- :cite:`Hellwig2022a` : Hellwig, L., Stolitzka, D., & Fairchild, M. D.
(2022). Extending CIECAM02 and CAM16 for the Helmholtz-Kohlrausch effect.
Color Research & Application, col.22793. doi:10.1002/col.22793
"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import astuple, dataclass, field
import numpy as np
from colour.algebra import sdiv, sdiv_mode, spow, vecmul
from colour.appearance.cam16 import (
MATRIX_16,
MATRIX_INVERSE_16,
)
from colour.appearance.ciecam02 import (
VIEWING_CONDITIONS_CIECAM02,
InductionFactors_CIECAM02,
achromatic_response_inverse,
base_exponential_non_linearity,
degree_of_adaptation,
hue_angle,
hue_quadrature,
lightness_correlate,
matrix_post_adaptation_non_linear_response_compression,
opponent_colour_dimensions_forward,
post_adaptation_non_linear_response_compression_forward,
post_adaptation_non_linear_response_compression_inverse,
)
from colour.appearance.hunt import luminance_level_adaptation_factor
from colour.hints import ArrayLike, NDArrayFloat, Tuple
from colour.utilities import (
CanonicalMapping,
MixinDataclassArithmetic,
as_float,
as_float_array,
from_range_100,
from_range_degrees,
has_only_nan,
ones,
to_domain_100,
to_domain_degrees,
tsplit,
tstack,
)
__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"
__all__ = [
"InductionFactors_Hellwig2022",
"VIEWING_CONDITIONS_HELLWIG2022",
"CAM_Specification_Hellwig2022",
"XYZ_to_Hellwig2022",
"Hellwig2022_to_XYZ",
"viewing_conditions_dependent_parameters",
"achromatic_response_forward",
"opponent_colour_dimensions_inverse",
"eccentricity_factor",
"brightness_correlate",
"colourfulness_correlate",
"chroma_correlate",
"saturation_correlate",
"P_p",
"hue_angle_dependency_Hellwig2022",
]
[docs]
class InductionFactors_Hellwig2022(
namedtuple("InductionFactors_Hellwig2022", ("F", "c", "N_c"))
):
"""
*Hellwig and Fairchild (2022)* colour appearance model induction factors.
Parameters
----------
F
Maximum degree of adaptation :math:`F`.
c
Exponential non-linearity :math:`c`.
N_c
Chromatic induction factor :math:`N_c`.
Notes
-----
- The *Hellwig and Fairchild (2022)* colour appearance model induction
factors are the same as *CIECAM02* and *CAM16* colour appearance model.
References
----------
:cite:`Fairchild2022`, :cite:`Hellwig2022`
"""
VIEWING_CONDITIONS_HELLWIG2022: CanonicalMapping = CanonicalMapping(
VIEWING_CONDITIONS_CIECAM02
)
VIEWING_CONDITIONS_HELLWIG2022.__doc__ = """
Reference *Hellwig and Fairchild (2022)* colour appearance model viewing
conditions.
References
----------
:cite:`Hellwig2022`
"""
[docs]
@dataclass
class CAM_Specification_Hellwig2022(MixinDataclassArithmetic):
"""
Define the *Hellwig and Fairchild (2022)* colour appearance model
specification.
This specification supports the *Helmholtz-Kohlrausch* effect extension
from :cite:`Hellwig2022a`.
Parameters
----------
J
Correlate of *Lightness* :math:`J`.
C
Correlate of *chroma* :math:`C`.
h
*Hue* angle :math:`h` in degrees.
s
Correlate of *saturation* :math:`s`.
Q
Correlate of *brightness* :math:`Q`.
M
Correlate of *colourfulness* :math:`M`.
H
*Hue* :math:`h` quadrature :math:`H`.
HC
*Hue* :math:`h` composition :math:`H^C`.
J_HK
Correlate of *Lightness* :math:`J_{HK}` accounting for
*Helmholtz-Kohlrausch* effect.
Q_HK
Correlate of *brightness* :math:`Q_{HK}` accounting for
*Helmholtz-Kohlrausch* effect.
References
----------
:cite:`Fairchild2022`, :cite:`Hellwig2022`, :cite:`Hellwig2022a`
"""
J: float | NDArrayFloat | None = field(default_factory=lambda: None)
C: float | NDArrayFloat | None = field(default_factory=lambda: None)
h: float | NDArrayFloat | None = field(default_factory=lambda: None)
s: float | NDArrayFloat | None = field(default_factory=lambda: None)
Q: float | NDArrayFloat | None = field(default_factory=lambda: None)
M: float | NDArrayFloat | None = field(default_factory=lambda: None)
H: float | NDArrayFloat | None = field(default_factory=lambda: None)
HC: float | NDArrayFloat | None = field(default_factory=lambda: None)
J_HK: float | NDArrayFloat | None = field(default_factory=lambda: None)
Q_HK: float | NDArrayFloat | None = field(default_factory=lambda: None)
[docs]
def XYZ_to_Hellwig2022(
XYZ: ArrayLike,
XYZ_w: ArrayLike,
L_A: ArrayLike,
Y_b: ArrayLike,
surround: (
InductionFactors_CIECAM02 | InductionFactors_Hellwig2022
) = VIEWING_CONDITIONS_HELLWIG2022["Average"],
discount_illuminant: bool = False,
compute_H: bool = True,
) -> CAM_Specification_Hellwig2022:
"""
Compute the *Hellwig and Fairchild (2022)* colour appearance model
correlates from given *CIE XYZ* tristimulus values.
This implementation supports the *Helmholtz-Kohlrausch* effect extension
from :cite:`Hellwig2022a`.
Parameters
----------
XYZ
*CIE XYZ* tristimulus values of test sample / stimulus.
XYZ_w
*CIE XYZ* tristimulus values of reference white.
L_A
Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
to be 20% of the luminance of a white object in the scene).
Y_b
Luminous factor of background :math:`Y_b` such as
:math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
light source and :math:`L_b` is the luminance of the background. For
viewing images, :math:`Y_b` can be the average :math:`Y` value for the
pixels in the entire image, or frequently, a :math:`Y` value of 20,
approximate an :math:`L^*` of 50 is used.
surround
Surround viewing conditions induction factors.
discount_illuminant
Truth value indicating if the illuminant should be discounted.
compute_H
Whether to compute *Hue* :math:`h` quadrature :math:`H`. :math:`H` is
rarely used, and expensive to compute.
Returns
-------
:class:`colour.CAM_Specification_Hellwig2022`
*Hellwig and Fairchild (2022)* colour appearance model specification.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``XYZ`` | [0, 100] | [0, 1] |
+------------+-----------------------+---------------+
| ``XYZ_w`` | [0, 100] | [0, 1] |
+------------+-----------------------+---------------+
+----------------------------------------+-----------------------\
+---------------+
| **Range** | **Scale - Reference** \
| **Scale - 1** |
+========================================+=======================\
+===============+
| ``CAM_Specification_Hellwig2022.J`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.C`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.h`` | [0, 360] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.s`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.Q`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.M`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.H`` | [0, 400] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.J_HK`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.Q_HK`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
References
----------
:cite:`Fairchild2022`, :cite:`Hellwig2022`, :cite:`Hellwig2022a`
Examples
--------
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> Y_b = 20.0
>>> surround = VIEWING_CONDITIONS_HELLWIG2022["Average"]
>>> XYZ_to_Hellwig2022(XYZ, XYZ_w, L_A, Y_b, surround)
... # doctest: +ELLIPSIS
CAM_Specification_Hellwig2022(J=41.7312079..., C=0.0257636..., \
h=217.0679597..., s=0.0608550..., Q=55.8523226..., M=0.0339889..., \
H=275.5949861..., HC=None, J_HK=41.8802782..., Q_HK=56.0518358...)
"""
XYZ = to_domain_100(XYZ)
XYZ_w = to_domain_100(XYZ_w)
_X_w, Y_w, _Z_w = tsplit(XYZ_w)
L_A = as_float_array(L_A)
Y_b = as_float_array(Y_b)
# Step 0
# Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
RGB_w = vecmul(MATRIX_16, XYZ_w)
# Computing degree of adaptation :math:`D`.
D = (
np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
if not discount_illuminant
else ones(L_A.shape)
)
F_L, z = viewing_conditions_dependent_parameters(Y_b, Y_w, L_A)
D_RGB = D[..., None] * Y_w[..., None] / RGB_w + 1 - D[..., None]
RGB_wc = D_RGB * RGB_w
# Applying forward post-adaptation non-linear response compression.
RGB_aw = post_adaptation_non_linear_response_compression_forward(RGB_wc, F_L)
# Computing achromatic responses for the whitepoint.
A_w = achromatic_response_forward(RGB_aw)
# Step 1
# Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
RGB = vecmul(MATRIX_16, XYZ)
# Step 2
RGB_c = D_RGB * RGB
# Step 3
# Applying forward post-adaptation non-linear response compression.
RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)
# Step 4
# Converting to preliminary cartesian coordinates.
a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))
# Computing the *hue* angle :math:`h`.
h = hue_angle(a, b)
# Step 5
# Computing eccentricity factor *e_t*.
e_t = eccentricity_factor(h)
# Computing hue :math:`h` quadrature :math:`H`.
H = hue_quadrature(h) if compute_H else np.full(h.shape, np.nan)
# TODO: Compute hue composition.
# Step 6
# Computing achromatic responses for the stimulus.
A = achromatic_response_forward(RGB_a)
# Step 7
# Computing the correlate of *Lightness* :math:`J`.
J = lightness_correlate(A, A_w, surround.c, z)
# Step 8
# Computing the correlate of *brightness* :math:`Q`.
Q = brightness_correlate(surround.c, J, A_w)
# Step 9
# Computing the correlate of *colourfulness* :math:`M`.
M = colourfulness_correlate(surround.N_c, e_t, a, b)
# Computing the correlate of *chroma* :math:`C`.
C = chroma_correlate(M, A_w)
# Computing the correlate of *saturation* :math:`s`.
s = saturation_correlate(M, Q)
# *Helmholtz-Kohlrausch* Effect Extension.
J_HK = J + hue_angle_dependency_Hellwig2022(h) * spow(C, 0.587)
Q_HK = (2 / surround.c) * (J_HK / 100) * A_w
return CAM_Specification_Hellwig2022(
as_float(from_range_100(J)),
as_float(from_range_100(C)),
as_float(from_range_degrees(h)),
as_float(from_range_100(s)),
as_float(from_range_100(Q)),
as_float(from_range_100(M)),
as_float(from_range_degrees(H, 400)),
None,
as_float(from_range_100(J_HK)),
as_float(from_range_100(Q_HK)),
)
[docs]
def Hellwig2022_to_XYZ(
specification: CAM_Specification_Hellwig2022,
XYZ_w: ArrayLike,
L_A: ArrayLike,
Y_b: ArrayLike,
surround: (
InductionFactors_CIECAM02 | InductionFactors_Hellwig2022
) = VIEWING_CONDITIONS_HELLWIG2022["Average"],
discount_illuminant: bool = False,
) -> NDArrayFloat:
"""
Convert from *Hellwig and Fairchild (2022)* specification to *CIE XYZ*
tristimulus values.
This implementation supports the *Helmholtz-Kohlrausch* effect extension
from :cite:`Hellwig2022a`.
Parameters
----------
specification
*Hellwig and Fairchild (2022)* colour appearance model specification.
Correlate of *Lightness* :math:`J`, correlate of *chroma* :math:`C` or
correlate of *colourfulness* :math:`M` and *hue* angle :math:`h` in
degrees must be specified, e.g., :math:`JCh` or :math:`JMh`.
XYZ_w
*CIE XYZ* tristimulus values of reference white.
L_A
Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
to be 20% of the luminance of a white object in the scene).
Y_b
Luminous factor of background :math:`Y_b` such as
:math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
light source and :math:`L_b` is the luminance of the background. For
viewing images, :math:`Y_b` can be the average :math:`Y` value for the
pixels in the entire image, or frequently, a :math:`Y` value of 20,
approximate an :math:`L^*` of 50 is used.
surround
Surround viewing conditions.
discount_illuminant
Discount the illuminant.
Returns
-------
:class:`numpy.ndarray`
*CIE XYZ* tristimulus values.
Raises
------
ValueError
If neither :math:`C` or :math:`M` correlates have been defined in the
``specification`` argument.
Notes
-----
+----------------------------------------+-----------------------\
+---------------+
| **Domain** | **Scale - Reference** \
| **Scale - 1** |
+========================================+=======================\
+===============+
| ``CAM_Specification_Hellwig2022.J`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.C`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.h`` | [0, 360] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.s`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.Q`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.M`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.H`` | [0, 400] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.J_HK`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``CAM_Specification_Hellwig2022.Q_HK`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
| ``XYZ_w`` | [0, 100] \
| [0, 1] |
+----------------------------------------+-----------------------\
+---------------+
+-----------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+===========+=======================+===============+
| ``XYZ`` | [0, 100] | [0, 1] |
+-----------+-----------------------+---------------+
References
----------
:cite:`Fairchild2022`, :cite:`Hellwig2022`, :cite:`Hellwig2022a`
Examples
--------
>>> specification = CAM_Specification_Hellwig2022(
... J=41.731207905126638, C=0.025763615829912909, h=217.06795976739301
... )
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> Y_b = 20.0
>>> Hellwig2022_to_XYZ(specification, XYZ_w, L_A, Y_b)
... # doctest: +ELLIPSIS
array([ 19.01..., 20... , 21.78...])
>>> specification = CAM_Specification_Hellwig2022(
... J_HK=41.880278283880095,
... C=0.025763615829912909,
... h=217.06795976739301,
... )
>>> Hellwig2022_to_XYZ(specification, XYZ_w, L_A, Y_b)
... # doctest: +ELLIPSIS
array([ 19.01..., 20... , 21.78...])
"""
J, C, h, _s, _Q, M, _H, _HC, J_HK, _Q_HK = astuple(specification)
C = to_domain_100(C)
h = to_domain_degrees(h)
M = to_domain_100(M)
if has_only_nan(J) and not has_only_nan(J_HK):
J_HK = to_domain_100(J_HK)
J = J_HK - hue_angle_dependency_Hellwig2022(h) * spow(C, 0.587)
elif has_only_nan(J):
raise ValueError(
'Either "J" or "J_HK" correlate must be defined in '
'the "CAM_Specification_Hellwig2022" argument!'
)
else:
J = to_domain_100(J)
L_A = as_float_array(L_A)
XYZ_w = to_domain_100(XYZ_w)
_X_w, Y_w, _Z_w = tsplit(XYZ_w)
# Step 0
# Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
RGB_w = vecmul(MATRIX_16, XYZ_w)
# Computing degree of adaptation :math:`D`.
D = (
np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
if not discount_illuminant
else ones(L_A.shape)
)
F_L, z = viewing_conditions_dependent_parameters(Y_b, Y_w, L_A)
D_RGB = D[..., None] * Y_w[..., None] / RGB_w + 1 - D[..., None]
RGB_wc = D_RGB * RGB_w
# Applying forward post-adaptation non-linear response compression.
RGB_aw = post_adaptation_non_linear_response_compression_forward(RGB_wc, F_L)
# Computing achromatic responses for the whitepoint.
A_w = achromatic_response_forward(RGB_aw)
# Step 1
if has_only_nan(M) and not has_only_nan(C):
M = (C * A_w) / 35
elif has_only_nan(M):
raise ValueError(
'Either "C" or "M" correlate must be defined in '
'the "CAM_Specification_Hellwig2022" argument!'
)
# Step 2
# Computing eccentricity factor *e_t*.
e_t = eccentricity_factor(h)
# Computing achromatic response :math:`A` for the stimulus.
A = achromatic_response_inverse(A_w, J, surround.c, z)
# Computing *P_p_1* to *P_p_2*.
P_p_n = P_p(surround.N_c, e_t, A)
P_p_1, P_p_2 = tsplit(P_p_n)
# Step 3
# Computing opponent colour dimensions :math:`a` and :math:`b`.
ab = opponent_colour_dimensions_inverse(P_p_1, h, M)
a, b = tsplit(ab)
# Step 4
# Applying post-adaptation non-linear response compression matrix.
RGB_a = matrix_post_adaptation_non_linear_response_compression(P_p_2, a, b)
# Step 5
# Applying inverse post-adaptation non-linear response compression.
RGB_c = post_adaptation_non_linear_response_compression_inverse(RGB_a + 0.1, F_L)
# Step 6
RGB = RGB_c / D_RGB
# Step 7
XYZ = vecmul(MATRIX_INVERSE_16, RGB)
return from_range_100(XYZ)
def viewing_conditions_dependent_parameters(
Y_b: ArrayLike,
Y_w: ArrayLike,
L_A: ArrayLike,
) -> Tuple[NDArrayFloat, NDArrayFloat]:
"""
Return the viewing condition dependent parameters.
Parameters
----------
Y_b
Adapting field *Y* tristimulus value :math:`Y_b`.
Y_w
Whitepoint *Y* tristimulus value :math:`Y_w`.
L_A
Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`.
Returns
-------
:class:`tuple`
Viewing condition dependent parameters.
Examples
--------
>>> viewing_conditions_dependent_parameters(20.0, 100.0, 318.31)
... # doctest: +ELLIPSIS
(1.1675444..., 1.9272135...)
"""
Y_b = as_float_array(Y_b)
Y_w = as_float_array(Y_w)
with sdiv_mode():
n = sdiv(Y_b, Y_w)
F_L = luminance_level_adaptation_factor(L_A)
z = base_exponential_non_linearity(n)
return F_L, z
def achromatic_response_forward(RGB: ArrayLike) -> NDArrayFloat:
"""
Return the achromatic response :math:`A` from given compressed
*CAM16* transform sharpened *RGB* array and :math:`N_{bb}` chromatic
induction factor for forward *Hellwig and Fairchild (2022)* implementation.
Parameters
----------
RGB
Compressed *CAM16* transform sharpened *RGB* array.
Returns
-------
:class:`numpy.ndarray`
Achromatic response :math:`A`.
Examples
--------
>>> RGB = np.array([7.94634384, 7.94713791, 7.9488967])
>>> achromatic_response_forward(RGB) # doctest: +ELLIPSIS
23.9322704...
"""
R, G, B = tsplit(RGB)
A = 2 * R + G + 0.05 * B - 0.305
return A
def opponent_colour_dimensions_inverse(
P_p_1: ArrayLike, h: ArrayLike, M: ArrayLike
) -> NDArrayFloat:
"""
Return opponent colour dimensions from given point :math:`P'_1`, hue
:math:`h` in degrees and correlate of *colourfulness* :math:`M` for
inverse *Hellwig and Fairchild (2022)* implementation.
Parameters
----------
P_p_1
Point :math:`P'_1`.
h
Hue :math:`h` in degrees.
M
Correlate of *colourfulness* :math:`M`.
Returns
-------
:class:`numpy.ndarray`
Opponent colour dimensions.
Examples
--------
>>> P_p_1 = 48.7719436928
>>> h = 217.067959767393
>>> M = 0.0387637282462
>>> opponent_colour_dimensions_inverse(P_p_1, h, M) # doctest: +ELLIPSIS
array([-0.0006341..., -0.0004790...])
"""
P_p_1 = as_float_array(P_p_1)
M = as_float_array(M)
hr = np.radians(h)
with sdiv_mode():
gamma = M / P_p_1
a = gamma * np.cos(hr)
b = gamma * np.sin(hr)
ab = tstack([a, b])
return ab
def eccentricity_factor(h: ArrayLike) -> NDArrayFloat:
"""
Return the eccentricity factor :math:`e_t` from given hue :math:`h` angle
in degrees for forward *CIECAM02* implementation.
Parameters
----------
h
Hue :math:`h` angle in degrees.
Returns
-------
:class:`numpy.ndarray`
Eccentricity factor :math:`e_t`.
Examples
--------
>>> eccentricity_factor(217.067959767393) # doctest: +ELLIPSIS
0.9945215...
"""
h = as_float_array(h)
hr = np.radians(h)
_h = hr
_2_h = 2 * hr
_3_h = 3 * hr
_4_h = 4 * hr
e_t = (
-0.0582 * np.cos(_h)
- 0.0258 * np.cos(_2_h)
- 0.1347 * np.cos(_3_h)
+ 0.0289 * np.cos(_4_h)
- 0.1475 * np.sin(_h)
- 0.0308 * np.sin(_2_h)
+ 0.0385 * np.sin(_3_h)
+ 0.0096 * np.sin(_4_h)
+ 1
)
return e_t
def brightness_correlate(
c: ArrayLike,
J: ArrayLike,
A_w: ArrayLike,
) -> NDArrayFloat:
"""
Return the *brightness* correlate :math:`Q`.
Parameters
----------
c
Surround exponential non-linearity :math:`c`.
J
*Lightness* correlate :math:`J`.
A_w
Achromatic response :math:`A_w` for the whitepoint.
Returns
-------
:class:`numpy.ndarray`
*Brightness* correlate :math:`Q`.
Examples
--------
>>> c = 0.69
>>> J = 41.7310911325
>>> A_w = 46.1741997997
>>> brightness_correlate(c, J, A_w) # doctest: +ELLIPSIS
55.8521663...
"""
c = as_float_array(c)
J = as_float_array(J)
A_w = as_float_array(A_w)
with sdiv_mode():
Q = (2 / c) * (J / 100) * A_w
return Q
def colourfulness_correlate(
N_c: ArrayLike,
e_t: ArrayLike,
a: ArrayLike,
b: ArrayLike,
) -> NDArrayFloat:
"""
Return the *colourfulness* correlate :math:`M`.
Parameters
----------
N_c
Surround chromatic induction factor :math:`N_{c}`.
e_t
Eccentricity factor :math:`e_t`.
a
Opponent colour dimension :math:`a`.
b
Opponent colour dimension :math:`b`.
Returns
-------
:class:`numpy.ndarray`
*Colourfulness* correlate :math:`M`.
Examples
--------
>>> N_c = 1
>>> e_t = 1.13423124867
>>> a = -0.00063418423001
>>> b = -0.000479072513542
>>> colourfulness_correlate(N_c, e_t, a, b) # doctest: +ELLIPSIS
0.0387637...
"""
N_c = as_float_array(N_c)
e_t = as_float_array(e_t)
a = as_float_array(a)
b = as_float_array(b)
M = 43.0 * N_c * e_t * np.hypot(a, b)
return M
def chroma_correlate(
M: ArrayLike,
A_w: ArrayLike,
) -> NDArrayFloat:
"""
Return the *chroma* correlate :math:`C`.
Parameters
----------
M
*Colourfulness* correlate :math:`M`.
A_w
Achromatic response :math:`A_w` for the whitepoint.
Returns
-------
:class:`numpy.ndarray`
*Chroma* correlate :math:`C`.
Examples
--------
>>> M = 0.0387637282462
>>> A_w = 46.1741997997
>>> chroma_correlate(M, A_w) # doctest: +ELLIPSIS
0.0293828...
"""
M = as_float_array(M)
A_w = as_float_array(A_w)
with sdiv_mode():
C = 35 * sdiv(M, A_w)
return C
def saturation_correlate(M: ArrayLike, Q: ArrayLike) -> NDArrayFloat:
"""
Return the *saturation* correlate :math:`s`.
Parameters
----------
M
*Colourfulness* correlate :math:`M`.
Q
*Brightness* correlate :math:`C`.
Returns
-------
:class:`numpy.ndarray`
*Saturation* correlate :math:`s`.
Examples
--------
>>> M = 0.0387637282462
>>> Q = 55.8523226578
>>> saturation_correlate(M, Q) # doctest: +ELLIPSIS
0.0694039...
"""
M = as_float_array(M)
Q = as_float_array(Q)
with sdiv_mode():
s = 100 * sdiv(M, Q)
return s
def P_p(
N_c: ArrayLike,
e_t: ArrayLike,
A: ArrayLike,
) -> NDArrayFloat:
"""
Return the points :math:`P'_1` and :math:`P'_2`.
Parameters
----------
N_c
Surround chromatic induction factor :math:`N_{c}`.
e_t
Eccentricity factor :math:`e_t`.
A
Achromatic response :math:`A` for the stimulus.
Returns
-------
:class:`numpy.ndarray`
Points :math:`P'`.
Examples
--------
>>> N_c = 1
>>> e_t = 1.13423124867
>>> A = 23.9322704261
>>> P_p(N_c, e_t, A) # doctest: +ELLIPSIS
array([ 48.7719436..., 23.9322704...])
"""
N_c = as_float_array(N_c)
e_t = as_float_array(e_t)
A = as_float_array(A)
P_p_1 = 43 * N_c * e_t
P_p_2 = A
P_p_n = tstack([P_p_1, P_p_2])
return P_p_n
def hue_angle_dependency_Hellwig2022(
h: ArrayLike,
) -> NDArrayFloat:
"""
Compute the hue angle dependency of the *Helmholtz-Kohlrausch* effect.
Parameters
----------
h
Hue :math:`h` angle in degrees.
Returns
-------
:class:`numpy.ndarray`
Hue angle dependency.
References
----------
:cite:`Hellwig2022a`
Examples
--------
>>> hue_angle_dependency_Hellwig2022(217.06795976739301)
... # doctest: +ELLIPSIS
1.2768219...
"""
h = as_float_array(h)
h_r = np.radians(h)
return as_float(
-0.160 * np.cos(h_r)
+ 0.132 * np.cos(2 * h_r)
- 0.405 * np.sin(h_r)
+ 0.080 * np.sin(2 * h_r)
+ 0.792
)