Source code for colour.notation.munsell

"""
Munsell Renotation System
=========================

Defines various objects for *Munsell Renotation System* computations:

-   :func:`colour.notation.munsell_value_Priest1920`: *Munsell* value :math:`V`
    computation of given *luminance* :math:`Y` using
    *Priest, Gibson and MacNicholas (1920)* method.
-   :func:`colour.notation.munsell_value_Munsell1933`: *Munsell* value
    :math:`V` computation of given *luminance* :math:`Y` using
    *Munsell, Sloan and Godlove (1933)* method.
-   :func:`colour.notation.munsell_value_Moon1943`: *Munsell* value :math:`V`
    computation of given *luminance* :math:`Y` using
    *Moon and Spencer (1943)* method.
-   :func:`colour.notation.munsell_value_Saunderson1944`: *Munsell* value
    :math:`V` computation of given *luminance* :math:`Y` using
    *Saunderson and Milner (1944)* method.
-   :func:`colour.notation.munsell_value_Ladd1955`: *Munsell* value :math:`V`
    computation of given *luminance* :math:`Y` using *Ladd and Pinney (1955)*
    method.
-   :func:`colour.notation.munsell_value_McCamy1987`: *Munsell* value :math:`V`
    computation of given *luminance* :math:`Y` using *McCamy (1987)* method.
-   :func:`colour.notation.munsell_value_ASTMD1535`: *Munsell* value
    :math:`V` computation of given *luminance* :math:`Y` using
    *ASTM D1535-08e1* method.
-   :attr:`colour.MUNSELL_VALUE_METHODS`: Supported *Munsell* value
    computation methods.
-   :func:`colour.munsell_value`: *Munsell* value :math:`V` computation of
    given *luminance* :math:`Y` using given method.
-   :func:`colour.munsell_colour_to_xyY`
-   :func:`colour.xyY_to_munsell_colour`

Notes
-----
-   The Munsell Renotation data commonly available within the *all.dat*,
    *experimental.dat* and *real.dat* files features *CIE xyY* colourspace values
    that are scaled by a :math:`1 / 0.975 \\simeq 1.02568` factor. If you are
    performing conversions using *Munsell* *Colorlab* specification,
    e.g. *2.5R 9/2*, according to *ASTM D1535-08e1* method, you should not
    scale the output :math:`Y` Luminance. However, if you use directly the
    *CIE xyY* colourspace values from the Munsell Renotation data, you should
    scale the :math:`Y` Luminance before conversions by a :math:`0.975` factor.

    *ASTM D1535-08e1* states that::

        The coefficients of this equation are obtained from the 1943 equation
        by multiplying each coefficient by 0.975, the reflectance factor of
        magnesium oxide with respect to the perfect reflecting diffuser, and
        rounding to ve digits of precision.

References
----------
-   :cite:`ASTMInternational1989a` : ASTM International. (1989). ASTM D1535-89
    - Standard Practice for Specifying Color by the Munsell System (pp. 1-29).
    Retrieved September 25, 2014, from
    http://www.astm.org/DATABASE.CART/HISTORICAL/D1535-89.htm
-   :cite:`Centore2012a` : Centore, P. (2012). An open-source inversion
    algorithm for the Munsell renotation. Color Research & Application, 37(6),
    455-464. doi:10.1002/col.20715
-   :cite:`Centore2014k` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/MunsellHueToASTMHue.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014l` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellSystemRoutines/LinearVsRadialInterpOnRenotationOvoid.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014m` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/MunsellToxyY.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014n` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/FindHueOnRenotationOvoid.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014o` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellSystemRoutines/BoundingRenotationHues.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014p` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/xyYtoMunsell.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014q` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/MunsellToxyForIntegerMunsellValue.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014r` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/MaxChromaForExtrapolatedRenotation.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014s` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/MunsellHueToChromDiagHueAngle.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014t` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    MunsellRenotationRoutines/ChromDiagHueAngleToMunsellHue.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centore2014u` : Centore, P. (2014).
    MunsellAndKubelkaMunkToolboxApr2014 -
    GeneralRoutines/CIELABtoApproxMunsellSpec.m.
    https://github.com/colour-science/MunsellAndKubelkaMunkToolbox
-   :cite:`Centorea` : Centore, P. (n.d.). The Munsell and Kubelka-Munk
    Toolbox. Retrieved January 23, 2018, from
    http://www.munsellcolourscienceforpainters.com/\
MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html
-   :cite:`Wikipedia2007c` : Nayatani, Y., Sobagaki, H., & Yano, K. H. T.
    (1995). Lightness dependency of chroma scales of a nonlinear
    color-appearance model and its latest formulation. Color Research &
    Application, 20(3), 156-167. doi:10.1002/col.5080200305
"""

from __future__ import annotations

import re

import numpy as np

from colour.algebra import (
    Extrapolator,
    LinearInterpolator,
    cartesian_to_cylindrical,
    euclidean_distance,
    polar_to_cartesian,
    sdiv,
    sdiv_mode,
    spow,
)
from colour.colorimetry import CCS_ILLUMINANTS, luminance_ASTMD1535
from colour.constants import (
    FLOATING_POINT_NUMBER_PATTERN,
    INTEGER_THRESHOLD,
    TOLERANCE_ABSOLUTE_DEFAULT,
    TOLERANCE_RELATIVE_DEFAULT,
)
from colour.hints import (
    ArrayLike,
    Dict,
    Literal,
    NDArrayFloat,
    NDArrayStr,
    Tuple,
    cast,
)
from colour.models import Lab_to_LCHab, XYZ_to_Lab, XYZ_to_xy, xyY_to_XYZ
from colour.notation import MUNSELL_COLOURS_ALL
from colour.utilities import (
    CACHE_REGISTRY,
    CanonicalMapping,
    Lookup,
    as_float,
    as_float_array,
    as_float_scalar,
    as_int_scalar,
    attest,
    domain_range_scale,
    from_range_1,
    from_range_10,
    get_domain_range_scale,
    is_caching_enabled,
    is_integer,
    is_numeric,
    to_domain_1,
    to_domain_10,
    to_domain_100,
    tsplit,
    tstack,
    usage_warning,
    validate_method,
)
from colour.volume import is_within_macadam_limits

__author__ = "Colour Developers, Paul Centore"
__copyright__ = "Copyright 2013 Colour Developers"
__copyright__ += ", "
__copyright__ += (
    "The Munsell and Kubelka-Munk Toolbox: Copyright  2010-2018 Paul Centore "
    "(Gales Ferry, CT 06335, USA); used by permission."
)
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "MUNSELL_GRAY_PATTERN",
    "MUNSELL_COLOUR_PATTERN",
    "MUNSELL_GRAY_FORMAT",
    "MUNSELL_COLOUR_FORMAT",
    "MUNSELL_GRAY_EXTENDED_FORMAT",
    "MUNSELL_COLOUR_EXTENDED_FORMAT",
    "MUNSELL_HUE_LETTER_CODES",
    "ILLUMINANT_NAME_MUNSELL",
    "CCS_ILLUMINANT_MUNSELL",
    "munsell_value_Priest1920",
    "munsell_value_Munsell1933",
    "munsell_value_Moon1943",
    "munsell_value_Saunderson1944",
    "munsell_value_Ladd1955",
    "munsell_value_McCamy1987",
    "munsell_value_ASTMD1535",
    "MUNSELL_VALUE_METHODS",
    "munsell_value",
    "munsell_specification_to_xyY",
    "munsell_colour_to_xyY",
    "xyY_to_munsell_specification",
    "xyY_to_munsell_colour",
    "parse_munsell_colour",
    "is_grey_munsell_colour",
    "normalise_munsell_specification",
    "munsell_colour_to_munsell_specification",
    "munsell_specification_to_munsell_colour",
    "xyY_from_renotation",
    "is_specification_in_renotation",
    "bounding_hues_from_renotation",
    "hue_to_hue_angle",
    "hue_angle_to_hue",
    "hue_to_ASTM_hue",
    "interpolation_method_from_renotation_ovoid",
    "xy_from_renotation_ovoid",
    "LCHab_to_munsell_specification",
    "maximum_chroma_from_renotation",
    "munsell_specification_to_xy",
]

MUNSELL_GRAY_PATTERN: str = f"N(?P<value>{FLOATING_POINT_NUMBER_PATTERN})"
MUNSELL_COLOUR_PATTERN: str = (
    f"(?P<hue>{FLOATING_POINT_NUMBER_PATTERN})\\s*"
    f"(?P<letter>BG|GY|YR|RP|PB|B|G|Y|R|P)\\s*"
    f"(?P<value>{FLOATING_POINT_NUMBER_PATTERN})\\s*\\/\\s*"
    f"(?P<chroma>[-+]?{FLOATING_POINT_NUMBER_PATTERN})"
)

MUNSELL_GRAY_FORMAT: str = "N{0}"
MUNSELL_COLOUR_FORMAT: str = "{0} {1}/{2}"
MUNSELL_GRAY_EXTENDED_FORMAT: str = "N{0:.{1}f}"
MUNSELL_COLOUR_EXTENDED_FORMAT: str = "{0:.{1}f}{2} {3:.{4}f}/{5:.{6}f}"

MUNSELL_HUE_LETTER_CODES: Lookup = Lookup(
    {
        "BG": 2,
        "GY": 4,
        "YR": 6,
        "RP": 8,
        "PB": 10,
        "B": 1,
        "G": 3,
        "Y": 5,
        "R": 7,
        "P": 9,
    }
)

ILLUMINANT_NAME_MUNSELL: str = "C"
CCS_ILLUMINANT_MUNSELL: NDArrayFloat = CCS_ILLUMINANTS[
    "CIE 1931 2 Degree Standard Observer"
][ILLUMINANT_NAME_MUNSELL]

_CACHE_MUNSELL_SPECIFICATIONS: dict = CACHE_REGISTRY.register_cache(
    f"{__name__}._CACHE_MUNSELL_SPECIFICATIONS"
)
_CACHE_MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR: dict = CACHE_REGISTRY.register_cache(
    f"{__name__}._CACHE_MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR"
)
_CACHE_MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION: dict = CACHE_REGISTRY.register_cache(
    f"{__name__}._CACHE_MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION"
)


def _munsell_specifications() -> NDArrayFloat:
    """
    Return the *Munsell Renotation System* specifications and caches them if
    not existing.

    The *Munsell Renotation System* data is stored in
    :attr:`colour.notation.MUNSELL_COLOURS` attribute in a 2 columns form::

        (
            (("2.5GY", 0.2, 2.0), (0.713, 1.414, 0.237)),
            (("5GY", 0.2, 2.0), (0.449, 1.145, 0.237)),
            ...,
            (("7.5GY", 0.2, 2.0), (0.262, 0.837, 0.237)),
        )

    The first column is converted from *Munsell* colour to specification using
    :func:`colour.notation.munsell.munsell_colour_to_munsell_specification`
    definition:

    ('2.5GY', 0.2, 2.0) --> (2.5, 0.2, 2.0, 4)

    Returns
    -------
    :class:`numpy.NDArrayFloat`
        *Munsell Renotation System* specifications.
    """

    global _CACHE_MUNSELL_SPECIFICATIONS  # noqa: PLW0602

    if is_caching_enabled() and "All" in _CACHE_MUNSELL_SPECIFICATIONS:
        return _CACHE_MUNSELL_SPECIFICATIONS["All"]

    munsell_specifications = np.array(
        [
            munsell_colour_to_munsell_specification(
                MUNSELL_COLOUR_FORMAT.format(*colour[0])
            )
            for colour in MUNSELL_COLOURS_ALL
        ]
    )

    _CACHE_MUNSELL_SPECIFICATIONS["All"] = munsell_specifications

    return munsell_specifications


def _munsell_value_ASTMD1535_interpolator() -> Extrapolator:
    """
    Return the *Munsell* value interpolator for *ASTM D1535-08e1* method and
    caches it if not existing.

    Returns
    -------
    :class:`colour.Extrapolator`
        *Munsell* value interpolator for *ASTM D1535-08e1* method.
    """

    global _CACHE_MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR  # noqa: PLW0602

    if "ASTM D1535-08 Interpolator" in (
        _CACHE_MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR
    ):
        return _CACHE_MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR[
            "ASTM D1535-08 Interpolator"
        ]

    munsell_values = np.arange(0, 10, 0.001)
    interpolator = LinearInterpolator(
        luminance_ASTMD1535(munsell_values), munsell_values
    )
    extrapolator = Extrapolator(interpolator)

    _CACHE_MUNSELL_VALUE_ASTM_D1535_08_INTERPOLATOR[
        "ASTM D1535-08 Interpolator"
    ] = extrapolator

    return extrapolator


def _munsell_maximum_chromas_from_renotation() -> (
    Tuple[Tuple[Tuple[float, float], float], ...]
):
    """
    Return the maximum *Munsell* chromas from *Munsell Renotation System* data
    and caches them if not existing.

    Returns
    -------
    :class:`tuple`
        Maximum *Munsell* chromas.
    """

    global _CACHE_MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION  # noqa: PLW0602

    if "Maximum Chromas From Renotation" in (
        _CACHE_MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION
    ):
        return _CACHE_MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION[
            "Maximum Chromas From Renotation"
        ]

    chromas = {}
    for munsell_colour in MUNSELL_COLOURS_ALL:
        hue, value, chroma, code = tsplit(
            munsell_colour_to_munsell_specification(
                MUNSELL_COLOUR_FORMAT.format(*munsell_colour[0])
            )
        )
        index = (hue, value, code)
        if index in chromas:
            chroma = max([chromas[index], chroma])

        chromas[index] = cast(float, chroma)

    maximum_chromas_from_renotation = tuple(zip(chromas.keys(), chromas.values()))

    _CACHE_MUNSELL_MAXIMUM_CHROMAS_FROM_RENOTATION[
        "Maximum Chromas From Renotation"
    ] = maximum_chromas_from_renotation

    return maximum_chromas_from_renotation


[docs] def munsell_value_Priest1920(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Priest et al. (1920)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Priest1920(12.23634268) # doctest: +ELLIPSIS 3.4980484... """ Y = to_domain_100(Y) V = 10 * np.sqrt(Y / 100) return as_float(from_range_10(V))
[docs] def munsell_value_Munsell1933(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Munsell et al. (1933)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Munsell1933(12.23634268) # doctest: +ELLIPSIS 4.1627702... """ Y = to_domain_100(Y) V = np.sqrt(1.4742 * Y - 0.004743 * (Y * Y)) return as_float(from_range_10(V))
[docs] def munsell_value_Moon1943(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Moon and Spencer (1943)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Moon1943(12.23634268) # doctest: +ELLIPSIS 4.0688120... """ Y = to_domain_100(Y) V = 1.4 * spow(Y, 0.426) return as_float(from_range_10(V))
[docs] def munsell_value_Saunderson1944(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Saunderson and Milner (1944)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Saunderson1944(12.23634268) # doctest: +ELLIPSIS 4.0444736... """ Y = to_domain_100(Y) V = 2.357 * spow(Y, 0.343) - 1.52 return as_float(from_range_10(V))
[docs] def munsell_value_Ladd1955(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Ladd and Pinney (1955)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Ladd1955(12.23634268) # doctest: +ELLIPSIS 4.0511633... """ Y = to_domain_100(Y) V = 2.468 * spow(Y, 1 / 3) - 1.636 return as_float(from_range_10(V))
[docs] def munsell_value_McCamy1987(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *McCamy (1987)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`ASTMInternational1989a` Examples -------- >>> munsell_value_McCamy1987(12.23634268) # doctest: +ELLIPSIS 4.0814348... """ Y = to_domain_100(Y) with sdiv_mode(): V = np.where( Y <= 0.9, 0.87445 * spow(Y, 0.9967), 2.49268 * spow(Y, 1 / 3) - 1.5614 - (0.985 / (((0.1073 * Y - 3.084) ** 2) + 7.54)) + sdiv(0.0133, spow(Y, 2.3)) + 0.0084 * np.sin(4.1 * spow(Y, 1 / 3) + 1) + sdiv(0.0221, Y) * np.sin(0.39 * (Y - 2)) - (sdiv(0.0037, 0.44 * Y)) * np.sin(1.28 * (Y - 0.53)), ) return as_float(from_range_10(V))
[docs] def munsell_value_ASTMD1535(Y: ArrayLike) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using an inverse lookup table from *ASTM D1535-08e1* method. Parameters ---------- Y *luminance* :math:`Y` Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ - The *Munsell* value* computation with *ASTM D1535-08e1* method is only defined for domain [0, 100]. References ---------- :cite:`ASTMInternational1989a` Examples -------- >>> munsell_value_ASTMD1535(12.23634268) # doctest: +ELLIPSIS 4.0824437... """ Y = to_domain_100(Y) V = _munsell_value_ASTMD1535_interpolator()(Y) return as_float(from_range_10(V))
MUNSELL_VALUE_METHODS: CanonicalMapping = CanonicalMapping( { "Priest 1920": munsell_value_Priest1920, "Munsell 1933": munsell_value_Munsell1933, "Moon 1943": munsell_value_Moon1943, "Saunderson 1944": munsell_value_Saunderson1944, "Ladd 1955": munsell_value_Ladd1955, "McCamy 1987": munsell_value_McCamy1987, "ASTM D1535": munsell_value_ASTMD1535, } ) MUNSELL_VALUE_METHODS.__doc__ = """ Supported *Munsell* value computation methods. References ---------- :cite:`ASTMInternational1989a`, :cite:`Wikipedia2007c` Aliases: - 'astm2008': 'ASTM D1535' """ MUNSELL_VALUE_METHODS["astm2008"] = MUNSELL_VALUE_METHODS["ASTM D1535"]
[docs] def munsell_value( Y: ArrayLike, method: ( Literal[ "ASTM D1535", "Ladd 1955", "McCamy 1987", "Moon 1943", "Munsell 1933", "Priest 1920", "Saunderson 1944", ] | str ) = "ASTM D1535", ) -> NDArrayFloat: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using given method. Parameters ---------- Y *luminance* :math:`Y`. method Computation method. Returns ------- :class:`np.float` or :class:`numpy.NDArrayFloat` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`ASTMInternational1989a`, :cite:`Wikipedia2007c` Examples -------- >>> munsell_value(12.23634268) # doctest: +ELLIPSIS 4.0824437... >>> munsell_value(12.23634268, method="Priest 1920") # doctest: +ELLIPSIS 3.4980484... >>> munsell_value(12.23634268, method="Munsell 1933") # doctest: +ELLIPSIS 4.1627702... >>> munsell_value(12.23634268, method="Moon 1943") # doctest: +ELLIPSIS 4.0688120... >>> munsell_value(12.23634268, method="Saunderson 1944") ... # doctest: +ELLIPSIS 4.0444736... >>> munsell_value(12.23634268, method="Ladd 1955") # doctest: +ELLIPSIS 4.0511633... >>> munsell_value(12.23634268, method="McCamy 1987") # doctest: +ELLIPSIS 4.0814348... """ method = validate_method(method, tuple(MUNSELL_VALUE_METHODS)) return MUNSELL_VALUE_METHODS[method](Y)
def _munsell_scale_factor() -> NDArrayFloat: """ Return the domain-range scale factor for *Munsell Renotation System*. Returns ------- :class:`numpy.NDArrayFloat` Domain-range scale factor for *Munsell Renotation System*. """ return np.array([10, 10, 50 if get_domain_range_scale() == "1" else 2, 10]) def _munsell_specification_to_xyY(specification: ArrayLike) -> NDArrayFloat: """ Convert given *Munsell* *Colorlab* specification to *CIE xyY* colourspace. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`numpy.NDArrayFloat` *CIE xyY* colourspace array. """ specification = normalise_munsell_specification(specification) if is_grey_munsell_colour(specification): specification = to_domain_10(specification) hue, value, chroma, code = specification else: specification = to_domain_10(specification, _munsell_scale_factor()) hue, value, chroma, code = specification code = as_int_scalar(code) attest( 0 <= hue <= 10, f'"{specification}" specification hue must be normalised to ' f"domain [0, 10]!", ) attest( 0 <= value <= 10, f'"{specification}" specification value must be normalised to ' f"domain [0, 10]!", ) with domain_range_scale("ignore"): Y = luminance_ASTMD1535(value) if is_integer(value): value_minus = value_plus = round(value) else: value_minus = np.floor(value) value_plus = value_minus + 1 specification_minus = as_float_array( value_minus if is_grey_munsell_colour(specification) else [hue, value_minus, chroma, code] ) x_minus, y_minus = tsplit(munsell_specification_to_xy(specification_minus)) specification_plus = as_float_array( value_plus if (is_grey_munsell_colour(specification) or value_plus == 10) else [hue, value_plus, chroma, code] ) x_plus, y_plus = tsplit(munsell_specification_to_xy(specification_plus)) if value_minus == value_plus: x = as_float(x_minus) y = as_float(y_minus) else: with domain_range_scale("ignore"): Y_minus = luminance_ASTMD1535(value_minus) Y_plus = luminance_ASTMD1535(value_plus) Y_minus_plus = np.squeeze([Y_minus, Y_plus]) x_minus_plus = np.squeeze([x_minus, x_plus]) y_minus_plus = np.squeeze([y_minus, y_plus]) x = as_float(LinearInterpolator(Y_minus_plus, x_minus_plus)(Y)) y = as_float(LinearInterpolator(Y_minus_plus, y_minus_plus)(Y)) Y = from_range_1(Y / 100) return tstack([x, y, Y]) def munsell_specification_to_xyY(specification: ArrayLike) -> NDArrayFloat: """ Convert given *Munsell* *Colorlab* specification to *CIE xyY* colourspace. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`numpy.NDArrayFloat` *CIE xyY* colourspace array. Notes ----- +-------------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +===================+=======================+===============+ | ``specification`` | ``hue`` : [0, 10] | [0, 1] | | | | | | | ``value`` : [0, 10] | [0, 1] | | | | | | | ``chroma`` : [0, 50] | [0, 1] | | | | | | | ``code`` : [0, 10] | [0, 1] | +-------------------+-----------------------+---------------+ +-------------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +===================+=======================+===============+ | ``xyY`` | [0, 1] | [0, 1] | +-------------------+-----------------------+---------------+ References ---------- :cite:`Centore2014m` Examples -------- >>> munsell_specification_to_xyY(np.array([2.1, 8.0, 17.9, 4])) ... # doctest: +ELLIPSIS array([ 0.4400632..., 0.5522428..., 0.5761962...]) >>> munsell_specification_to_xyY(np.array([np.nan, 8.9, np.nan, np.nan])) ... # doctest: +ELLIPSIS array([ 0.31006 , 0.31616 , 0.7461345...]) """ specification = as_float_array(specification) shape = list(specification.shape) xyY = [_munsell_specification_to_xyY(a) for a in np.reshape(specification, (-1, 4))] shape[-1] = 3 return np.reshape(as_float_array(xyY), shape)
[docs] def munsell_colour_to_xyY(munsell_colour: ArrayLike) -> NDArrayFloat: """ Convert given *Munsell* colour to *CIE xyY* colourspace. Parameters ---------- munsell_colour *Munsell* colour. Returns ------- :class:`numpy.NDArrayFloat` *CIE xyY* colourspace array. Notes ----- +-----------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +===========+=======================+===============+ | ``xyY`` | [0, 1] | [0, 1] | +-----------+-----------------------+---------------+ References ---------- :cite:`Centorea`, :cite:`Centore2012a` Examples -------- >>> munsell_colour_to_xyY("4.2YR 8.1/5.3") # doctest: +ELLIPSIS array([ 0.3873694..., 0.3575165..., 0.59362 ]) >>> munsell_colour_to_xyY("N8.9") # doctest: +ELLIPSIS array([ 0.31006 , 0.31616 , 0.7461345...]) """ munsell_colour = np.array(munsell_colour) shape = list(munsell_colour.shape) specification = np.array( [munsell_colour_to_munsell_specification(a) for a in np.ravel(munsell_colour)] ) return munsell_specification_to_xyY( from_range_10(np.reshape(specification, (*shape, 4)), _munsell_scale_factor()) )
def _xyY_to_munsell_specification(xyY: ArrayLike) -> NDArrayFloat: """ Convert from *CIE xyY* colourspace to *Munsell* *Colorlab* specification. Parameters ---------- xyY *CIE xyY* colourspace array. Returns ------- :class:`numpy.NDArrayFloat` *Munsell* *Colorlab* specification. Raises ------ ValueError If the given *CIE xyY* colourspace array is not within MacAdam limits. RuntimeError If the maximum iterations count has been reached without converging to a result. """ xyY = as_float_array(xyY) x, y, Y = tsplit(xyY) Y = to_domain_1(Y) if not is_within_macadam_limits(xyY, ILLUMINANT_NAME_MUNSELL): usage_warning( f'"{xyY!r}" is not within "MacAdam" limits for illuminant ' f'"{ILLUMINANT_NAME_MUNSELL}"!' ) with domain_range_scale("ignore"): value = munsell_value_ASTMD1535(Y * 100) if is_integer(value): value = np.around(value) with domain_range_scale("ignore"): x_center, y_center, Y_center = tsplit(_munsell_specification_to_xyY(value)) rho_input, phi_input, _z_input = tsplit( cartesian_to_cylindrical([x - x_center, y - y_center, Y_center]) ) phi_input = np.degrees(phi_input) grey_threshold = 1e-7 if rho_input < grey_threshold: return from_range_10(normalise_munsell_specification(value)) XYZ = xyY_to_XYZ(xyY) _X, Y, _Z = tsplit(XYZ) x_i, y_i = CCS_ILLUMINANT_MUNSELL X_r, Y_r, Z_r = xyY_to_XYZ([x_i, y_i, Y]) with sdiv_mode(): XYZ_r = np.array([(1 / Y_r) * X_r, 1, (1 / Y_r) * Z_r]) Lab = XYZ_to_Lab(XYZ, XYZ_to_xy(XYZ_r)) LCHab = Lab_to_LCHab(Lab) hue_initial, _value_initial, chroma_initial, code_initial = tsplit( LCHab_to_munsell_specification(LCHab) ) specification_current = [ hue_initial, value, (5 / 5.5) * chroma_initial, code_initial, ] convergence_threshold = 1e-7 iterations_maximum = 64 iterations = 0 while iterations <= iterations_maximum: iterations += 1 ( hue_current, _value_current, chroma_current, code_current, ) = specification_current hue_angle_current = hue_to_hue_angle([hue_current, code_current]) chroma_maximum = maximum_chroma_from_renotation( [hue_current, value, code_current] ) if chroma_current > chroma_maximum: chroma_current = specification_current[2] = chroma_maximum with domain_range_scale("ignore"): x_current, y_current, _Y_current = tsplit( _munsell_specification_to_xyY(specification_current) ) rho_current, phi_current, _z_current = tsplit( cartesian_to_cylindrical( [x_current - x_center, y_current - y_center, Y_center] ) ) phi_current = np.degrees(phi_current) phi_current_difference = (360 - phi_input + phi_current) % 360 if phi_current_difference > 180: phi_current_difference -= 360 phi_differences_data = [phi_current_difference] hue_angles_differences_data = [0] hue_angles = [hue_angle_current] iterations_maximum_inner = 16 iterations_inner = 0 extrapolate = False while ( np.sign(np.min(phi_differences_data)) == np.sign(np.max(phi_differences_data)) and extrapolate is False ): iterations_inner += 1 if iterations_inner > iterations_maximum_inner: # NOTE: This exception is likely never raised in practice: # 300K iterations with random numbers never reached this code # path, it is kept for consistency with the reference # implementation. raise RuntimeError( # pragma: no cover "Maximum inner iterations count reached without convergence!" ) hue_angle_inner = ( hue_angle_current + iterations_inner * (phi_input - phi_current) ) % 360 hue_angle_difference_inner = ( iterations_inner * (phi_input - phi_current) % 360 ) if hue_angle_difference_inner > 180: hue_angle_difference_inner -= 360 hue_inner, code_inner = hue_angle_to_hue(hue_angle_inner) with domain_range_scale("ignore"): x_inner, y_inner, _Y_inner = _munsell_specification_to_xyY( [ hue_inner, value, chroma_current, # pyright: ignore code_inner, ] ) if len(phi_differences_data) >= 2: extrapolate = True if extrapolate is False: rho_inner, phi_inner, _z_inner = cartesian_to_cylindrical( [x_inner - x_center, y_inner - y_center, Y_center] ) phi_inner = np.degrees(phi_inner) phi_inner_difference = (360 - phi_input + phi_inner) % 360 if phi_inner_difference > 180: phi_inner_difference -= 360 phi_differences_data.append(phi_inner_difference) hue_angles.append(hue_angle_inner) hue_angles_differences_data.append(hue_angle_difference_inner) phi_differences = np.array(phi_differences_data) hue_angles_differences = np.array(hue_angles_differences_data) phi_differences_indexes = phi_differences.argsort() phi_differences = phi_differences[phi_differences_indexes] hue_angles_differences = hue_angles_differences[phi_differences_indexes] hue_angle_difference_new = ( Extrapolator(LinearInterpolator(phi_differences, hue_angles_differences))(0) % 360 ) hue_angle_new = cast( float, (hue_angle_current + hue_angle_difference_new) % 360 ) hue_new, code_new = hue_angle_to_hue(hue_angle_new) specification_current = [hue_new, value, chroma_current, code_new] with domain_range_scale("ignore"): x_current, y_current, _Y_current = _munsell_specification_to_xyY( specification_current ) chroma_scale = 50 if get_domain_range_scale() == "1" else 2 difference = euclidean_distance([x, y], [x_current, y_current]) if difference < convergence_threshold: return from_range_10( np.array(specification_current), np.array([10, 10, chroma_scale, 10]), ) # TODO: Consider refactoring implementation. ( hue_current, _value_current, chroma_current, code_current, ) = specification_current chroma_maximum = maximum_chroma_from_renotation( [hue_current, value, code_current] ) # NOTE: This condition is likely never "True" while producing a valid # "Munsell Specification" in practice: 100K iterations with random # numbers never reached this code path while producing a valid # "Munsell Specification". if chroma_current > chroma_maximum: chroma_current = specification_current[2] = chroma_maximum with domain_range_scale("ignore"): x_current, y_current, _Y_current = _munsell_specification_to_xyY( specification_current ) rho_current, phi_current, _z_current = cartesian_to_cylindrical( [x_current - x_center, y_current - y_center, Y_center] ) rho_bounds_data = [rho_current] chroma_bounds_data = [chroma_current] iterations_maximum_inner = 16 iterations_inner = 0 while not (np.min(rho_bounds_data) < rho_input < np.max(rho_bounds_data)): iterations_inner += 1 if iterations_inner > iterations_maximum_inner: raise RuntimeError( "Maximum inner iterations count reached without convergence!" ) with sdiv_mode(): chroma_inner = ( (rho_input / rho_current) ** iterations_inner ) * chroma_current if chroma_inner > chroma_maximum: chroma_inner = specification_current[2] = chroma_maximum specification_inner = [ hue_current, value, chroma_inner, code_current, ] with domain_range_scale("ignore"): x_inner, y_inner, _Y_inner = _munsell_specification_to_xyY( specification_inner ) rho_inner, phi_inner, _z_inner = cartesian_to_cylindrical( [x_inner - x_center, y_inner - y_center, Y_center] ) rho_bounds_data.append(rho_inner) chroma_bounds_data.append(chroma_inner) rho_bounds = np.array(rho_bounds_data) chroma_bounds = np.array(chroma_bounds_data) rhos_bounds_indexes = rho_bounds.argsort() rho_bounds = rho_bounds[rhos_bounds_indexes] chroma_bounds = chroma_bounds[rhos_bounds_indexes] chroma_new = LinearInterpolator(rho_bounds, chroma_bounds)(rho_input) specification_current = [hue_current, value, chroma_new, code_current] with domain_range_scale("ignore"): x_current, y_current, _Y_current = _munsell_specification_to_xyY( specification_current ) difference = euclidean_distance([x, y], [x_current, y_current]) if difference < convergence_threshold: return from_range_10( np.array(specification_current), np.array([10, 10, chroma_scale, 10]), ) # NOTE: This exception is likely never raised in practice: 300K iterations # with random numbers never reached this code path, it is kept for # consistency with the reference # implementation raise RuntimeError( # pragma: no cover "Maximum outside iterations count reached without convergence!" ) def xyY_to_munsell_specification(xyY: ArrayLike) -> NDArrayFloat: """ Convert from *CIE xyY* colourspace to *Munsell* *Colorlab* specification. Parameters ---------- xyY *CIE xyY* colourspace array. Returns ------- :class:`numpy.NDArrayFloat` *Munsell* *Colorlab* specification. Raises ------ ValueError If the given *CIE xyY* colourspace array is not within MacAdam limits. RuntimeError If the maximum iterations count has been reached without converging to a result. Notes ----- +-------------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +===================+=======================+===============+ | ``xyY`` | [0, 1] | [0, 1] | +-------------------+-----------------------+---------------+ +-------------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +===================+=======================+===============+ | ``specification`` | ``hue`` : [0, 10] | [0, 1] | | | | | | | ``value`` : [0, 10] | [0, 1] | | | | | | | ``chroma`` : [0, 50] | [0, 1] | | | | | | | ``code`` : [0, 10] | [0, 1] | +-------------------+-----------------------+---------------+ References ---------- :cite:`Centore2014p` Examples -------- >>> xyY = np.array([0.38736945, 0.35751656, 0.59362000]) >>> xyY_to_munsell_specification(xyY) # doctest: +ELLIPSIS array([ 4.2000019..., 8.0999999..., 5.2999996..., 6. ]) """ xyY = as_float_array(xyY) shape = list(xyY.shape) specification = [_xyY_to_munsell_specification(a) for a in np.reshape(xyY, (-1, 3))] shape[-1] = 4 return np.reshape(as_float_array(specification), shape)
[docs] def xyY_to_munsell_colour( xyY: ArrayLike, hue_decimals: int = 1, value_decimals: int = 1, chroma_decimals: int = 1, ) -> str | NDArrayStr: """ Convert from *CIE xyY* colourspace to *Munsell* colour. Parameters ---------- xyY *CIE xyY* colourspace array. hue_decimals Hue formatting decimals. value_decimals Value formatting decimals. chroma_decimals Chroma formatting decimals. Returns ------- :class:`str` or :class:`numpy.NDArrayFloat` *Munsell* colour. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``xyY`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Centorea`, :cite:`Centore2012a` Examples -------- >>> xyY = np.array([0.38736945, 0.35751656, 0.59362000]) >>> xyY_to_munsell_colour(xyY) '4.2YR 8.1/5.3' """ specification = to_domain_10( xyY_to_munsell_specification(xyY), _munsell_scale_factor() ) shape = list(specification.shape) decimals = (hue_decimals, value_decimals, chroma_decimals) munsell_colour = np.reshape( np.array( [ munsell_specification_to_munsell_colour(a, *decimals) for a in np.reshape(specification, (-1, 4)) ] ), shape[:-1], ) return str(munsell_colour) if shape == [4] else munsell_colour
def parse_munsell_colour(munsell_colour: str) -> NDArrayFloat: """ Parse given *Munsell* colour and returns an intermediate *Munsell* *Colorlab* specification. Parameters ---------- munsell_colour *Munsell* colour. Returns ------- :class:`numpy.NDArrayFloat` Intermediate *Munsell* *Colorlab* specification. Raises ------ ValueError If the given specification is not a valid *Munsell Renotation System* colour specification. Examples -------- >>> parse_munsell_colour("N5.2") array([ nan, 5.2, nan, nan]) >>> parse_munsell_colour("0YR 2.0/4.0") array([ 0., 2., 4., 6.]) """ match = re.match(MUNSELL_GRAY_PATTERN, munsell_colour, flags=re.IGNORECASE) if match: return tstack( [ np.nan, match.group("value"), np.nan, np.nan, ] ) match = re.match(MUNSELL_COLOUR_PATTERN, munsell_colour, flags=re.IGNORECASE) if match: return tstack( [ match.group("hue"), match.group("value"), match.group("chroma"), MUNSELL_HUE_LETTER_CODES[match.group("letter").upper()], ] ) raise ValueError( f'"{munsell_colour}" is not a valid "Munsell Renotation System" ' f"colour specification!" ) def is_grey_munsell_colour(specification: ArrayLike) -> bool: """ Return if given *Munsell* *Colorlab* specification is a grey colour. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`bool` Is specification a grey colour. Examples -------- >>> is_grey_munsell_colour(np.array([0.0, 2.0, 4.0, 6])) False >>> is_grey_munsell_colour(np.array([np.nan, 0.5, np.nan, np.nan])) True """ specification = as_float_array(specification) specification = np.squeeze(specification[~np.isnan(specification)]) return is_numeric(as_float(specification)) def normalise_munsell_specification(specification: ArrayLike) -> NDArrayFloat: """ Normalise given *Munsell* *Colorlab* specification. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`numpy.NDArrayFloat` Normalised *Munsell* *Colorlab* specification. Examples -------- >>> normalise_munsell_specification(np.array([0.0, 2.0, 4.0, 6])) array([ 10., 2., 4., 7.]) >>> normalise_munsell_specification(np.array([np.nan, 0.5, np.nan, np.nan])) array([ nan, 0.5, nan, nan]) """ specification = as_float_array(specification) if is_grey_munsell_colour(specification): return specification * np.array([np.nan, 1, np.nan, np.nan]) # pyright: ignore else: hue, value, chroma, code = specification if hue == 0: # 0YR is equivalent to 10R. hue, code = 10, (code + 1) % 10 if chroma == 0: return tstack([np.nan, value, np.nan, np.nan]) else: return tstack([hue, value, chroma, code]) def munsell_colour_to_munsell_specification( munsell_colour: str, ) -> NDArrayFloat: """ Retrieve a normalised *Munsell* *Colorlab* specification from given *Munsell* colour. Parameters ---------- munsell_colour *Munsell* colour. Returns ------- :class:`numpy.NDArrayFloat` Normalised *Munsell* *Colorlab* specification. Examples -------- >>> munsell_colour_to_munsell_specification("N5.2") array([ nan, 5.2, nan, nan]) >>> munsell_colour_to_munsell_specification("0YR 2.0/4.0") array([ 10., 2., 4., 7.]) """ return normalise_munsell_specification(parse_munsell_colour(munsell_colour)) def munsell_specification_to_munsell_colour( specification: ArrayLike, hue_decimals: int = 1, value_decimals: int = 1, chroma_decimals: int = 1, ) -> str: """ Convert from *Munsell* *Colorlab* specification to given *Munsell* colour. Parameters ---------- specification *Munsell* *Colorlab* specification. hue_decimals Hue formatting decimals. value_decimals Value formatting decimals. chroma_decimals Chroma formatting decimals. Returns ------- :class:`str` *Munsell* colour. Examples -------- >>> munsell_specification_to_munsell_colour(np.array([np.nan, 5.2, np.nan, np.nan])) 'N5.2' >>> munsell_specification_to_munsell_colour(np.array([10, 2.0, 4.0, 7])) '10.0R 2.0/4.0' """ hue, value, chroma, code = tsplit(normalise_munsell_specification(specification)) if is_grey_munsell_colour(specification): return MUNSELL_GRAY_EXTENDED_FORMAT.format(value, value_decimals) else: hue = round(hue, hue_decimals) attest( 0 <= hue <= 10, f'"{specification!r}" specification hue must be normalised to ' f"domain [0, 10]!", ) value = round(value, value_decimals) attest( 0 <= value <= 10, f'"{specification!r}" specification value must be normalised to ' f"domain [0, 10]!", ) chroma = round(chroma, chroma_decimals) attest( 2 <= chroma <= 50, f'"{specification!r}" specification chroma must be normalised to ' f"domain [2, 50]!", ) code_values = MUNSELL_HUE_LETTER_CODES.values() code = round(code, 1) attest( code in code_values, f'"{specification!r}" specification code must one of "{code_values}"!', ) if value == 0: return MUNSELL_GRAY_EXTENDED_FORMAT.format(value, value_decimals) else: hue_letter = MUNSELL_HUE_LETTER_CODES.first_key_from_value(code) return MUNSELL_COLOUR_EXTENDED_FORMAT.format( hue, hue_decimals, hue_letter, value, value_decimals, chroma, chroma_decimals, ) def xyY_from_renotation( specification: ArrayLike, absolute_tolerance: float = TOLERANCE_ABSOLUTE_DEFAULT, relative_tolerance: float = TOLERANCE_RELATIVE_DEFAULT, ) -> NDArrayFloat: """ Return given existing *Munsell* *Colorlab* specification *CIE xyY* colourspace vector from *Munsell Renotation System* data. Parameters ---------- specification *Munsell* *Colorlab* specification. absolute_tolerance Absolute tolerance to find the existing *Munsell Renotation System* data. relative_tolerance Relative tolerance to find the existing *Munsell Renotation System* data. Returns ------- :class:`numpy.NDArrayFloat` *CIE xyY* colourspace vector. Raises ------ ValueError If the given specification doesn't exist in *Munsell Renotation System* data. Examples -------- >>> xyY_from_renotation(np.array([2.5, 0.2, 2.0, 4])) # doctest: +ELLIPSIS array([ 0.71..., 1.41..., 0.23...]) """ specification = normalise_munsell_specification(specification) try: index = np.argwhere( np.all( np.isclose( specification, _munsell_specifications(), atol=absolute_tolerance, rtol=relative_tolerance, ), axis=-1, ) ) return MUNSELL_COLOURS_ALL[as_int_scalar(index[0])][1] except Exception as error: raise ValueError( f'"{specification}" specification does not exists in ' '"Munsell Renotation System" data!' ) from error def is_specification_in_renotation(specification: ArrayLike) -> bool: """ Return whether given *Munsell* *Colorlab* specification is in *Munsell Renotation System* data. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`bool` Whether specification is in *Munsell Renotation System* data. Examples -------- >>> is_specification_in_renotation(np.array([2.5, 0.2, 2.0, 4])) True >>> is_specification_in_renotation(np.array([64, 0.2, 2.0, 4])) False """ try: xyY_from_renotation(specification) return True except ValueError: return False def bounding_hues_from_renotation(hue_and_code: ArrayLike) -> NDArrayFloat: """ Return for a given *Munsell* *Colorlab* specification hue and *Munsell* *Colorlab* specification code the two bounding hues from *Munsell Renotation System* data. Parameters ---------- hue_and_code *Munsell* *Colorlab* specification hue and *Munsell* *Colorlab* specification code. Returns ------- :class:`numpy.NDArrayFloat` Bounding hues. References ---------- :cite:`Centore2014o` Examples -------- >>> bounding_hues_from_renotation([3.2, 4]) array([[ 2.5, 4. ], [ 5. , 4. ]]) # Coverage Doctests >>> bounding_hues_from_renotation([0.0, 1]) array([[ 10., 2.], [ 10., 2.]]) """ hue, code = as_float_array(hue_and_code) hue_cw: float code_cw: float hue_ccw: float code_ccw: float if hue % 2.5 == 0: if hue == 0: hue_cw = 10 code_cw = (code + 1) % 10 else: hue_cw = hue code_cw = code hue_ccw = hue_cw code_ccw = code_cw else: hue_cw = 2.5 * np.floor(hue / 2.5) hue_ccw = (hue_cw + 2.5) % 10 if hue_ccw == 0: hue_ccw = 10 if hue_cw == 0: hue_cw = 10 code_cw = (code + 1) % 10 if code_cw == 0: code_cw = 10 else: code_cw = code code_ccw = code return as_float_array([(hue_cw, code_cw), (hue_ccw, code_ccw)]) def hue_to_hue_angle(hue_and_code: ArrayLike) -> float: """ Convert from the *Munsell* *Colorlab* specification hue and *Munsell* *Colorlab* specification code to hue angle in degrees. Parameters ---------- hue_and_code *Munsell* *Colorlab* specification hue and *Munsell* *Colorlab* specification code. Returns ------- :class:`float` Hue angle in degrees. References ---------- :cite:`Centore2014s` Examples -------- >>> hue_to_hue_angle([3.2, 4]) 65.5 """ hue, code = as_float_array(hue_and_code) single_hue = ((17 - code) % 10 + (hue / 10) - 0.5) % 10 hue_angle = LinearInterpolator( [0, 2, 3, 4, 5, 6, 8, 9, 10], [0, 45, 70, 135, 160, 225, 255, 315, 360] )(single_hue) return as_float_scalar(hue_angle) def hue_angle_to_hue(hue_angle: float) -> NDArrayFloat: """ Convert from hue angle in degrees to the *Munsell* *Colorlab* specification hue and code. Parameters ---------- hue_angle Hue angle in degrees. Returns ------- :class:`numpy.NDArrayFloat` (*Munsell* *Colorlab* specification hue, *Munsell* *Colorlab* specification code). References ---------- :cite:`Centore2014t` Examples -------- >>> hue_angle_to_hue(65.54) # doctest: +ELLIPSIS array([ 3.216, 4. ]) """ single_hue = LinearInterpolator( [0, 45, 70, 135, 160, 225, 255, 315, 360], [0, 2, 3, 4, 5, 6, 8, 9, 10] )(hue_angle) if single_hue <= 0.5: code = 7 elif single_hue <= 1.5: code = 6 elif single_hue <= 2.5: code = 5 elif single_hue <= 3.5: code = 4 elif single_hue <= 4.5: code = 3 elif single_hue <= 5.5: code = 2 elif single_hue <= 6.5: code = 1 elif single_hue <= 7.5: code = 10 elif single_hue <= 8.5: code = 9 elif single_hue <= 9.5: code = 8 else: code = 7 hue = (10 * (single_hue % 1) + 5) % 10 if hue == 0: hue = 10 return tstack(cast(ArrayLike, [hue, code])) def hue_to_ASTM_hue(hue_and_code) -> float: """ Convert from the *Munsell* *Colorlab* specification hue and *Munsell* *Colorlab* specification codeto *ASTM* hue number. Parameters ---------- hue_and_code *Munsell* *Colorlab* specification hue and *Munsell* *Colorlab* specification code. Returns ------- :class:`float` *ASTM* hue number. References ---------- :cite:`Centore2014k` Examples -------- >>> hue_to_ASTM_hue([3.2, 4]) # doctest: +ELLIPSIS 33.2... """ hue, code = as_float_array(hue_and_code) ASTM_hue = 10 * ((7 - code) % 10) + hue return 100 if ASTM_hue == 0 else ASTM_hue def interpolation_method_from_renotation_ovoid( specification: ArrayLike, ) -> Literal["Linear", "Radial"] | None: """ Return whether to use linear or radial interpolation when drawing ovoids through data points in the *Munsell Renotation System* data from given specification. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :py:data:`None` or :class:`str` Interpolation method. References ---------- :cite:`Centore2014l` Examples -------- >>> interpolation_method_from_renotation_ovoid([2.5, 5.0, 12.0, 4]) 'Radial' """ specification = normalise_munsell_specification(specification) interpolation_methods: Dict[int, Literal["Linear", "Radial"] | None] = { 0: None, 1: "Linear", 2: "Radial", } if is_grey_munsell_colour(specification): # No interpolation needed for grey colours. interpolation_method = 0 else: hue, value, chroma, code = specification attest( 0 <= value <= 10, f'"{specification}" specification value must be normalised to ' f"domain [0, 10]!", ) attest( is_integer(value), f'"{specification}" specification value must be an int!', ) value = round(value) attest( 2 <= chroma <= 50, f'"{specification}" specification chroma must be normalised to ' f"domain [2, 50]!", ) attest( abs(2 * (chroma / 2 - round(chroma / 2))) <= INTEGER_THRESHOLD, f'"{specification}" specification chroma must be an int and ' f"multiple of 2!", ) chroma = 2 * round(chroma / 2) interpolation_method = 0 # Standard Munsell Renotation System hue, no interpolation needed. if hue % 2.5 == 0: interpolation_method = 0 ASTM_hue = hue_to_ASTM_hue([hue, code]) if value == 1: if chroma == 2: if 15 < ASTM_hue < 30 or 60 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 4: if 12.5 < ASTM_hue < 27.5 or 57.5 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 6: interpolation_method = 2 if 55 < ASTM_hue < 80 else 1 elif chroma == 8: interpolation_method = 2 if 67.5 < ASTM_hue < 77.5 else 1 elif chroma >= 10: # NOTE: This condition is likely never "True" while producing a # valid "Munsell Specification" in practice: 1M iterations with # random numbers never reached this code path while producing a # valid "Munsell Specification". if 72.5 < ASTM_hue < 77.5: # pragma: no cover # noqa: SIM108 interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 2: if chroma == 2: if 15 < ASTM_hue < 27.5 or 77.5 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 4: if 12.5 < ASTM_hue < 30 or 62.5 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 6: if 7.5 < ASTM_hue < 22.5 or 62.5 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 8: if 7.5 < ASTM_hue < 15 or 60 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 10: interpolation_method = 2 if 65 < ASTM_hue < 77.5 else 1 else: # pragma: no cover interpolation_method = 1 elif value == 3: if chroma == 2: if 10 < ASTM_hue < 37.5 or 65 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 4: if 5 < ASTM_hue < 37.5 or 55 < ASTM_hue < 72.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma in (6, 8, 10): if 7.5 < ASTM_hue < 37.5 or 57.5 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 12: if 7.5 < ASTM_hue < 42.5 or 57.5 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 4: if chroma in (2, 4): if 7.5 < ASTM_hue < 42.5 or 57.5 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma in (6, 8): if 7.5 < ASTM_hue < 40 or 57.5 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 10: if 7.5 < ASTM_hue < 40 or 57.5 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 5: if chroma == 2: if 5 < ASTM_hue < 37.5 or 55 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma in (4, 6, 8): if 2.5 < ASTM_hue < 42.5 or 55 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 10: if 2.5 < ASTM_hue < 42.5 or 55 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 6: if chroma in (2, 4): if 5 < ASTM_hue < 37.5 or 55 < ASTM_hue < 87.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 6: if 5 < ASTM_hue < 42.5 or 57.5 < ASTM_hue < 87.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma in (8, 10): if 5 < ASTM_hue < 42.5 or 60 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma in (12, 14): if 5 < ASTM_hue < 42.5 or 60 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 16: if 5 < ASTM_hue < 42.5 or 60 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 7: if chroma in (2, 4, 6): if 5 < ASTM_hue < 42.5 or 60 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 8: if 5 < ASTM_hue < 42.5 or 60 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 10: if 30 < ASTM_hue < 42.5 or 5 < ASTM_hue < 25 or 60 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 elif chroma == 12: if ( 30 < ASTM_hue < 42.5 or 7.5 < ASTM_hue < 27.5 or 80 < ASTM_hue < 82.5 ): interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 14: if 32.5 < ASTM_hue < 40 or 7.5 < ASTM_hue < 15 or 80 < ASTM_hue < 82.5: interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 8: if chroma in (2, 4, 6, 8, 10, 12): if 5 < ASTM_hue < 40 or 60 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 elif chroma >= 14: if 32.5 < ASTM_hue < 40 or 5 < ASTM_hue < 15 or 60 < ASTM_hue < 85: interpolation_method = 2 else: interpolation_method = 1 else: # pragma: no cover interpolation_method = 1 elif value == 9: if chroma in (2, 4): if 5 < ASTM_hue < 40 or 55 < ASTM_hue < 80: interpolation_method = 2 else: interpolation_method = 1 elif chroma in (6, 8, 10, 12, 14): interpolation_method = 2 if 5 < ASTM_hue < 42.5 else 1 elif chroma >= 16: interpolation_method = 2 if 35 < ASTM_hue < 42.5 else 1 else: # pragma: no cover interpolation_method = 1 elif value == 10: # Ideal white, no interpolation needed. interpolation_method = 0 return interpolation_methods[interpolation_method] def xy_from_renotation_ovoid(specification: ArrayLike) -> NDArrayFloat: """ Convert given *Munsell* *Colorlab* specification to *CIE xy* chromaticity coordinates on *Munsell Renotation System* ovoid. The *CIE xy* point will be on the ovoid about the achromatic point, corresponding to the *Munsell* *Colorlab* specification value and chroma. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`numpy.NDArrayFloat` *CIE xy* chromaticity coordinates. Raises ------ ValueError If an invalid interpolation method is retrieved from internal computations. References ---------- :cite:`Centore2014n` Examples -------- >>> xy_from_renotation_ovoid([2.5, 5.0, 12.0, 4]) ... # doctest: +ELLIPSIS array([ 0.4333..., 0.5602...]) >>> xy_from_renotation_ovoid([np.nan, 8, np.nan, np.nan]) ... # doctest: +ELLIPSIS array([ 0.31006..., 0.31616...]) """ specification = normalise_munsell_specification(specification) if is_grey_munsell_colour(specification): return CCS_ILLUMINANT_MUNSELL else: hue, value, chroma, code = specification attest( 1 <= value <= 9, f'"{specification}" specification value must be normalised to ' f"domain [1, 9]!", ) attest( is_integer(value), f'"{specification}" specification value must be an int!', ) value = round(value) attest( 2 <= chroma <= 50, f'"{specification}" specification chroma must be normalised to ' f"domain [2, 50]!", ) attest( abs(2 * (chroma / 2 - round(chroma / 2))) <= INTEGER_THRESHOLD, f'"{specification}" specification chroma must be an int and ' f"multiple of 2!", ) chroma = 2 * round(chroma / 2) # Checking if renotation data is available without interpolation using # given threshold. threshold = 1e-7 if ( abs(hue) < threshold or abs(hue - 2.5) < threshold or abs(hue - 5) < threshold or abs(hue - 7.5) < threshold or abs(hue - 10) < threshold ): hue = 2.5 * round(hue / 2.5) x, y, _Y = xyY_from_renotation([hue, value, chroma, code]) return tstack([x, y]) hue_code_cw, hue_code_ccw = bounding_hues_from_renotation([hue, code]) hue_minus, code_minus = hue_code_cw hue_plus, code_plus = hue_code_ccw x_grey, y_grey = CCS_ILLUMINANT_MUNSELL specification_minus = (hue_minus, value, chroma, code_minus) x_minus, y_minus, Y_minus = xyY_from_renotation(specification_minus) rho_minus, phi_minus, _z_minus = cartesian_to_cylindrical( [x_minus - x_grey, y_minus - y_grey, Y_minus] ) phi_minus = np.degrees(phi_minus) specification_plus = (hue_plus, value, chroma, code_plus) x_plus, y_plus, Y_plus = xyY_from_renotation(specification_plus) rho_plus, phi_plus, _z_plus = cartesian_to_cylindrical( [x_plus - x_grey, y_plus - y_grey, Y_plus] ) phi_plus = np.degrees(phi_plus) hue_angle_lower = hue_to_hue_angle([hue_minus, code_minus]) hue_angle = hue_to_hue_angle([hue, code]) hue_angle_upper = hue_to_hue_angle([hue_plus, code_plus]) if phi_minus - phi_plus > 180: phi_plus += 360 if hue_angle_lower == 0: hue_angle_lower = 360 if hue_angle_lower > hue_angle_upper: if hue_angle_lower > hue_angle: hue_angle_lower -= 360 else: hue_angle_lower -= 360 hue_angle -= 360 interpolation_method = interpolation_method_from_renotation_ovoid(specification) attest( interpolation_method is not None, f"Interpolation method must be one of: " f"\"{', '.join(['Linear', 'Radial'])}\"", ) hue_angle_lower_upper = np.squeeze([hue_angle_lower, hue_angle_upper]) if interpolation_method == "Linear": x_minus_plus = np.squeeze([x_minus, x_plus]) y_minus_plus = np.squeeze([y_minus, y_plus]) x = LinearInterpolator(hue_angle_lower_upper, x_minus_plus)(hue_angle) y = LinearInterpolator(hue_angle_lower_upper, y_minus_plus)(hue_angle) elif interpolation_method == "Radial": rho_minus_plus = np.squeeze([rho_minus, rho_plus]) phi_minus_plus = np.squeeze([phi_minus, phi_plus]) rho = as_float_array( LinearInterpolator(hue_angle_lower_upper, rho_minus_plus)(hue_angle) ) phi = as_float_array( LinearInterpolator(hue_angle_lower_upper, phi_minus_plus)(hue_angle) ) rho_phi = np.squeeze([rho, np.radians(phi)]) x, y = tsplit(polar_to_cartesian(rho_phi) + tstack([x_grey, y_grey])) return tstack([x, y]) def LCHab_to_munsell_specification(LCHab: ArrayLike) -> NDArrayFloat: """ Convert from *CIE L\\*C\\*Hab* colourspace to approximate *Munsell* *Colorlab* specification. Parameters ---------- LCHab *CIE L\\*C\\*Hab* colourspace array. Returns ------- :class:`numpy.NDArrayFloat` *Munsell* *Colorlab* specification. References ---------- :cite:`Centore2014u` Examples -------- >>> LCHab = np.array([100, 17.50664796, 244.93046842]) >>> LCHab_to_munsell_specification(LCHab) # doctest: +ELLIPSIS array([ 8.0362412..., 10. , 3.5013295..., 1. ]) """ L, C, Hab = tsplit(LCHab) if Hab == 0: code = 8 elif Hab <= 36: code = 7 elif Hab <= 72: code = 6 elif Hab <= 108: code = 5 elif Hab <= 144: code = 4 elif Hab <= 180: code = 3 elif Hab <= 216: code = 2 elif Hab <= 252: code = 1 elif Hab <= 288: code = 10 elif Hab <= 324: code = 9 else: code = 8 hue = LinearInterpolator([0, 36], [0, 10])(Hab % 36) if hue == 0: hue = 10 value = L / 10 chroma = C / 5 return tstack(cast(ArrayLike, [hue, value, chroma, code])) def maximum_chroma_from_renotation(hue_and_value_and_code: ArrayLike) -> float: """ Return the maximum *Munsell* chroma from *Munsell Renotation System* data using given *Munsell* *Colorlab* specification hue, *Munsell* *Colorlab* specification value and *Munsell* *Colorlab* specification code. Parameters ---------- hue_and_value_and_code *Munsell* *Colorlab* specification hue, *Munsell* *Colorlab* specification value and *Munsell* *Colorlab* specification code. Returns ------- :class:`float` Maximum chroma. References ---------- :cite:`Centore2014r` Examples -------- >>> maximum_chroma_from_renotation([2.5, 5, 5]) 14.0 """ hue, value, code = as_float_array(hue_and_value_and_code) # Ideal white, no chroma. if value >= 9.99: return 0 attest( 1 <= value <= 10, f'"{value}" value must be normalised to domain [1, 10]!', ) if value % 1 == 0: value_minus = value value_plus = value else: value_minus = np.floor(value) value_plus = value_minus + 1 hue_code_cw, hue_code_ccw = bounding_hues_from_renotation([hue, code]) hue_cw, code_cw = hue_code_cw hue_ccw, code_ccw = hue_code_ccw maximum_chromas = _munsell_maximum_chromas_from_renotation() specification_for_indexes = [chroma[0] for chroma in maximum_chromas] ma_limit_mcw = maximum_chromas[ specification_for_indexes.index( (hue_cw, value_minus, code_cw) # pyright: ignore ) ][1] ma_limit_mccw = maximum_chromas[ specification_for_indexes.index( (hue_ccw, value_minus, code_ccw) # pyright: ignore ) ][1] if value_plus <= 9: ma_limit_pcw = maximum_chromas[ specification_for_indexes.index( (hue_cw, value_plus, code_cw) # pyright: ignore ) ][1] ma_limit_pccw = maximum_chromas[ specification_for_indexes.index( (hue_ccw, value_plus, code_ccw) # pyright: ignore ) ][1] max_chroma = np.min([ma_limit_mcw, ma_limit_mccw, ma_limit_pcw, ma_limit_pccw]) else: L = as_float_scalar(luminance_ASTMD1535(value)) L9 = as_float_scalar(luminance_ASTMD1535(9)) L10 = as_float_scalar(luminance_ASTMD1535(10)) max_chroma = np.min( [ LinearInterpolator([L9, L10], [ma_limit_mcw, 0])(L), LinearInterpolator([L9, L10], [ma_limit_mccw, 0])(L), ] ) return as_float_scalar(max_chroma) def munsell_specification_to_xy(specification: ArrayLike) -> NDArrayFloat: """ Convert given *Munsell* *Colorlab* specification to *CIE xy* chromaticity coordinates by interpolating over *Munsell Renotation System* data. Parameters ---------- specification *Munsell* *Colorlab* specification. Returns ------- :class:`numpy.NDArrayFloat` *CIE xy* chromaticity coordinates. References ---------- :cite:`Centore2014q` Examples -------- >>> munsell_specification_to_xy([2.1, 8.0, 17.9, 4]) ... # doctest: +ELLIPSIS array([ 0.4400632..., 0.5522428...]) >>> munsell_specification_to_xy([np.nan, 8, np.nan, np.nan]) ... # doctest: +ELLIPSIS array([ 0.31006..., 0.31616...]) """ specification = normalise_munsell_specification(specification) if is_grey_munsell_colour(specification): return CCS_ILLUMINANT_MUNSELL else: hue, value, chroma, code = specification attest( 0 <= value <= 10, f'"{specification}" specification value must be normalised to ' f"domain [0, 10]!", ) attest( is_integer(value), f'"{specification}" specification value must be an int!', ) value = round(value) if chroma % 2 == 0: chroma_minus = chroma_plus = chroma else: chroma_minus = 2 * np.floor(chroma / 2) chroma_plus = chroma_minus + 2 if chroma_minus == 0: # Smallest chroma ovoid collapses to illuminant chromaticity # coordinates. x_minus, y_minus = CCS_ILLUMINANT_MUNSELL else: x_minus, y_minus = xy_from_renotation_ovoid( [hue, value, chroma_minus, code] ) x_plus, y_plus = xy_from_renotation_ovoid([hue, value, chroma_plus, code]) if chroma_minus == chroma_plus: x = x_minus y = y_minus else: chroma_minus_plus = np.squeeze([chroma_minus, chroma_plus]) x_minus_plus = np.squeeze([x_minus, x_plus]) y_minus_plus = np.squeeze([y_minus, y_plus]) x = LinearInterpolator(chroma_minus_plus, x_minus_plus)(chroma) y = LinearInterpolator(chroma_minus_plus, y_minus_plus)(chroma) return tstack([x, y])