Source code for colour.quality.tm3018

"""
ANSI/IES TM-30-18 Colour Fidelity Index
=======================================

Define the *ANSI/IES TM-30-18 Colour Fidelity Index* (CFI) computation
objects:

- :class:`colour.quality.ColourQuality_Specification_ANSIIESTM3018`
- :func:`colour.quality.colour_fidelity_index_ANSIIESTM3018`

References
----------
-   :cite:`ANSI2018` : ANSI, & IES Color Committee. (2018). ANSI/IES TM-30-18 -
    IES Method for Evaluating Light Source Color Rendition.
    ISBN:978-0-87995-379-9
-   :cite:`VincentJ2017` : Vincent J. (2017). Is there any numpy group by
    function? Retrieved June 30, 2023, from https://stackoverflow.com/a/43094244
"""

from __future__ import annotations

from dataclasses import dataclass

import numpy as np

from colour.colorimetry import SpectralDistribution
from colour.hints import ArrayLike, NDArrayFloat, NDArrayInt, Tuple, cast
from colour.quality import colour_fidelity_index_CIE2017
from colour.quality.cfi2017 import (
    ColourRendering_Specification_CIE2017,
    DataColorimetry_TCS_CIE2017,
    delta_E_to_R_f,
)
from colour.utilities import as_float_array, as_float_scalar, as_int_array


[docs] @dataclass class ColourQuality_Specification_ANSIIESTM3018: """ Define the *ANSI/IES TM-30-18 Colour Fidelity Index* (CFI) colour quality specification. Parameters ---------- name Name of the test spectral distribution. sd_test Spectral distribution of the tested illuminant. sd_reference Spectral distribution of the reference illuminant. R_f *Colour Fidelity Index* (CFI) :math:`R_f`. R_s Individual *colour fidelity indexes* data for each sample. CCT Correlated colour temperature :math:`T_{cp}`. D_uv Distance from the Planckian locus :math:`\\Delta_{uv}`. colorimetry_data Colorimetry data for the test and reference computations. R_g Gamut index :math:`R_g`. bins List of 16 lists, each containing the indexes of colour samples that lie in the respective hue bin. averages_test Averages of *CAM02-UCS* a', b' coordinates for each hue bin for test samples. averages_reference Averages for reference samples. average_norms Distance of averages for reference samples from the origin. R_fs Local colour fidelities for each hue bin. R_cs Local chromaticity shifts for each hue bin, in percents. R_hs Local hue shifts for each hue bin. """ name: str sd_test: SpectralDistribution sd_reference: SpectralDistribution R_f: float R_s: NDArrayFloat CCT: float D_uv: float colorimetry_data: Tuple[DataColorimetry_TCS_CIE2017, DataColorimetry_TCS_CIE2017] R_g: float bins: NDArrayInt averages_test: NDArrayFloat averages_reference: NDArrayFloat average_norms: NDArrayFloat R_fs: NDArrayFloat R_cs: NDArrayFloat R_hs: NDArrayFloat
[docs] def colour_fidelity_index_ANSIIESTM3018( sd_test: SpectralDistribution, additional_data: bool = False ) -> ( float | ColourQuality_Specification_ANSIIESTM3018 | ColourRendering_Specification_CIE2017 ): """ Return the *ANSI/IES TM-30-18 Colour Fidelity Index* (CFI) :math:`R_f` of given spectral distribution. Parameters ---------- sd_test Test spectral distribution. additional_data Whether to output additional data. Returns ------- :class:`float` or \ :class:`colour.quality.ColourQuality_Specification_ANSIIESTM3018` *ANSI/IES TM-30-18 Colour Fidelity Index* (CFI). References ---------- :cite:`ANSI2018`, :cite:`VincentJ2017` Examples -------- >>> from colour import SDS_ILLUMINANTS >>> sd = SDS_ILLUMINANTS["FL2"] >>> colour_fidelity_index_ANSIIESTM3018(sd) # doctest: +ELLIPSIS 70.1208244... """ if not additional_data: return colour_fidelity_index_CIE2017(sd_test, False) specification = cast( ColourRendering_Specification_CIE2017, colour_fidelity_index_CIE2017(sd_test, True), ) # Setup bins based on where the reference a'b' points are located. bins = as_int_array(np.floor(specification.colorimetry_data[1].JMh[:, 2] / 22.5)) bin_mask = bins == np.reshape(np.arange(16), (-1, 1)) # "bin_mask" is used later with Numpy broadcasting and "np.nanmean" # to skip a list comprehension and keep all the mean calculation vectorised # as per :cite:`VincentJ2017`. bin_mask = np.choose(bin_mask, [np.nan, 1]) # Per-bin a'b' averages. test_apbp = as_float_array(specification.colorimetry_data[0].Jpapbp[:, 1:]) ref_apbp = as_float_array(specification.colorimetry_data[1].Jpapbp[:, 1:]) # Tile the "apbp" data in the third dimension and use broadcasting to place # each bin mask along the third dimension. By multiplying these matrices # together, Numpy automatically expands the apbp data in the third # dimension and multiplies by the nan-filled bin mask. Finally, # "np.nanmean" can compute the bin mean apbp positions with the appropriate # axis argument. averages_test = np.transpose( np.nanmean( np.reshape(np.transpose(bin_mask), (99, 1, 16)) * np.reshape(test_apbp, (*ref_apbp.shape, 1)), axis=0, ) ) averages_reference = np.transpose( np.nanmean( np.reshape(np.transpose(bin_mask), (99, 1, 16)) * np.reshape(ref_apbp, (*ref_apbp.shape, 1)), axis=0, ) ) # Gamut Index. R_g = 100 * (averages_area(averages_test) / averages_area(averages_reference)) # Local colour fidelity indexes, i.e., 16 CFIs for each bin. bin_delta_E_s = np.nanmean( np.reshape(specification.delta_E_s, (1, -1)) * bin_mask, axis=1 ) R_fs = as_float_array(delta_E_to_R_f(bin_delta_E_s)) # Angles bisecting the hue bins. angles = (22.5 * np.arange(16) + 11.25) / 180 * np.pi cosines = np.cos(angles) sines = np.sin(angles) average_norms = np.linalg.norm(averages_reference, axis=1) a_deltas = averages_test[:, 0] - averages_reference[:, 0] b_deltas = averages_test[:, 1] - averages_reference[:, 1] # Local chromaticity shifts, multiplied by 100 to obtain percentages. R_cs = 100 * (a_deltas * cosines + b_deltas * sines) / average_norms # Local hue shifts. R_hs = (-a_deltas * sines + b_deltas * cosines) / average_norms return ColourQuality_Specification_ANSIIESTM3018( specification.name, sd_test, specification.sd_reference, specification.R_f, specification.R_s, specification.CCT, specification.D_uv, specification.colorimetry_data, R_g, bins, averages_test, averages_reference, average_norms, R_fs, R_cs, R_hs, )
def averages_area(averages: ArrayLike) -> float: """ Compute the area of the polygon formed by the hue bin averages. Parameters ---------- averages Hue bin averages. Returns ------- :class:`float` Area of the polygon. """ averages = as_float_array(averages) N = averages.shape[0] triangle_areas = np.empty(N) for i in range(N): u = averages[i, :] v = averages[(i + 1) % N, :] triangle_areas[i] = (u[0] * v[1] - u[1] * v[0]) / 2 return as_float_scalar(np.sum(triangle_areas))