"""
Jiang et al. (2013) - Camera RGB Sensitivities Recovery
=======================================================
Define the objects for camera *RGB* sensitivities recovery using
*Jiang, Liu, Gu and Süsstrunk (2013)* method:
- :func:`colour.recovery.PCA_Jiang2013`
- :func:`colour.recovery.RGB_to_sd_camera_sensitivity_Jiang2013`
- :func:`colour.recovery.RGB_to_msds_camera_sensitivities_Jiang2013`
References
----------
- :cite:`Jiang2013` : Jiang, J., Liu, D., Gu, J., & Susstrunk, S. (2013).
What is the space of spectral sensitivity functions for digital color
cameras? 2013 IEEE Workshop on Applications of Computer Vision (WACV),
168-179. doi:10.1109/WACV.2013.6475015
"""
from __future__ import annotations
import numpy as np
from colour.algebra import eigen_decomposition
from colour.characterisation import RGB_CameraSensitivities
from colour.colorimetry import (
MultiSpectralDistributions,
SpectralDistribution,
SpectralShape,
reshape_msds,
reshape_sd,
)
from colour.hints import (
ArrayLike,
Mapping,
NDArrayFloat,
Tuple,
cast,
)
from colour.recovery import BASIS_FUNCTIONS_DYER2017
from colour.utilities import as_float_array, optional, runtime_warning, tsplit
__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"
__all__ = [
"PCA_Jiang2013",
"RGB_to_sd_camera_sensitivity_Jiang2013",
"RGB_to_msds_camera_sensitivities_Jiang2013",
]
[docs]
def PCA_Jiang2013(
msds_camera_sensitivities: Mapping[str, MultiSpectralDistributions],
eigen_w_v_count: int | None = None,
additional_data: bool = False,
) -> (
Tuple[
Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat],
Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat],
]
| Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat]
):
"""
Perform the *Principal Component Analysis* (PCA) on given camera *RGB*
sensitivities.
Parameters
----------
msds_camera_sensitivities
Camera *RGB* sensitivities.
eigen_w_v_count
Eigen-values :math:`w` and eigen-vectors :math:`v` count.
additional_data
Whether to return both the eigen-values :math:`w` and eigen-vectors
:math:`v`.
Returns
-------
:class:`tuple`
Tuple of camera *RGB* sensitivities eigen-values :math:`w` and
eigen-vectors :math:`v` or tuple of camera *RGB* sensitivities
eigen-vectors :math:`v`.
Examples
--------
>>> from colour.colorimetry import SpectralShape
>>> from colour.characterisation import MSDS_CAMERA_SENSITIVITIES
>>> shape = SpectralShape(400, 700, 10)
>>> camera_sensitivities = {
... camera: msds.copy().align(shape)
... for camera, msds in MSDS_CAMERA_SENSITIVITIES.items()
... }
>>> np.array(PCA_Jiang2013(camera_sensitivities)).shape
(3, 31, 31)
"""
R_sensitivities, G_sensitivities, B_sensitivities = [], [], []
def normalised_sensitivity(
msds: MultiSpectralDistributions, channel: str
) -> NDArrayFloat:
"""Return a normalised camera *RGB* sensitivity."""
sensitivity = cast(SpectralDistribution, msds.signals[channel].copy())
return sensitivity.normalise().values
for msds in msds_camera_sensitivities.values():
R_sensitivities.append(normalised_sensitivity(msds, msds.labels[0]))
G_sensitivities.append(normalised_sensitivity(msds, msds.labels[1]))
B_sensitivities.append(normalised_sensitivity(msds, msds.labels[2]))
R_w_v = eigen_decomposition(
np.vstack(R_sensitivities), eigen_w_v_count, covariance_matrix=True
)
G_w_v = eigen_decomposition(
np.vstack(G_sensitivities), eigen_w_v_count, covariance_matrix=True
)
B_w_v = eigen_decomposition(
np.vstack(B_sensitivities), eigen_w_v_count, covariance_matrix=True
)
if additional_data:
return (
(R_w_v[1], G_w_v[1], B_w_v[1]),
(R_w_v[0], G_w_v[0], B_w_v[0]),
)
else:
return R_w_v[1], G_w_v[1], B_w_v[1]
[docs]
def RGB_to_sd_camera_sensitivity_Jiang2013(
RGB: ArrayLike,
illuminant: SpectralDistribution,
reflectances: MultiSpectralDistributions,
eigen_w: ArrayLike,
shape: SpectralShape | None = None,
) -> SpectralDistribution:
"""
Recover a single camera *RGB* sensitivity for given camera *RGB* values
using *Jiang et al. (2013)* method.
Parameters
----------
RGB
Camera *RGB* values corresponding with ``reflectances``.
illuminant
Illuminant spectral distribution used to produce the camera *RGB*
values.
reflectances
Reflectance spectral distributions used to produce the camera *RGB*
values.
eigen_w
Eigen-vectors :math:`v` for the particular camera *RGB* sensitivity
being recovered.
shape
Spectral shape of the recovered camera *RGB* sensitivity,
``illuminant`` and ``reflectances`` will be aligned to it if passed,
otherwise, ``illuminant`` shape is used.
Returns
-------
:class:`colour.RGB_CameraSensitivities`
Recovered camera *RGB* sensitivities.
Examples
--------
>>> from colour.colorimetry import (
... SDS_ILLUMINANTS,
... msds_to_XYZ,
... sds_and_msds_to_msds,
... )
>>> from colour.characterisation import (
... MSDS_CAMERA_SENSITIVITIES,
... SDS_COLOURCHECKERS,
... )
>>> from colour.recovery import SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017
>>> illuminant = SDS_ILLUMINANTS["D65"]
>>> sensitivities = MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"]
>>> reflectances = [
... sd.copy().align(SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017)
... for sd in SDS_COLOURCHECKERS["BabelColor Average"].values()
... ]
>>> reflectances = sds_and_msds_to_msds(reflectances)
>>> R, G, B = tsplit(
... msds_to_XYZ(
... reflectances,
... method="Integration",
... cmfs=sensitivities,
... illuminant=illuminant,
... k=1,
... shape=SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
... )
... )
>>> R_w, G_w, B_w = tsplit(np.moveaxis(BASIS_FUNCTIONS_DYER2017, 0, 1))
>>> RGB_to_sd_camera_sensitivity_Jiang2013(
... R,
... illuminant,
... reflectances,
... R_w,
... SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
... ) # doctest: +ELLIPSIS
SpectralDistribution([[ 4.00000000e+02, 7.2066502...e-04],
[ 4.10000000e+02, -8.9698693...e-04],
[ 4.20000000e+02, 4.6871961...e-03],
[ 4.30000000e+02, 7.7694971...e-03],
[ 4.40000000e+02, 6.9335511...e-03],
[ 4.50000000e+02, 5.3134947...e-03],
[ 4.60000000e+02, 4.4819958...e-03],
[ 4.70000000e+02, 4.6393791...e-03],
[ 4.80000000e+02, 5.1866668...e-03],
[ 4.90000000e+02, 4.3828317...e-03],
[ 5.00000000e+02, 4.2001231...e-03],
[ 5.10000000e+02, 5.4065544...e-03],
[ 5.20000000e+02, 9.6445141...e-03],
[ 5.30000000e+02, 1.4277112...e-02],
[ 5.40000000e+02, 7.9950718...e-03],
[ 5.50000000e+02, 4.6429813...e-03],
[ 5.60000000e+02, 5.3423840...e-03],
[ 5.70000000e+02, 1.0519383...e-02],
[ 5.80000000e+02, 5.2889443...e-02],
[ 5.90000000e+02, 9.7851167...e-02],
[ 6.00000000e+02, 9.9600382...e-02],
[ 6.10000000e+02, 8.3840892...e-02],
[ 6.20000000e+02, 6.9180858...e-02],
[ 6.30000000e+02, 5.6967854...e-02],
[ 6.40000000e+02, 4.2930308...e-02],
[ 6.50000000e+02, 3.0241267...e-02],
[ 6.60000000e+02, 2.3230047...e-02],
[ 6.70000000e+02, 1.3721943...e-02],
[ 6.80000000e+02, 4.0944885...e-03],
[ 6.90000000e+02, -4.4223475...e-04],
[ 7.00000000e+02, -6.1427769...e-04]],
SpragueInterpolator,
{},
Extrapolator,
{'method': 'Constant', 'left': None, 'right': None})
"""
RGB = as_float_array(RGB)
shape = optional(shape, illuminant.shape)
if illuminant.shape != shape:
runtime_warning(f'Aligning "{illuminant.name}" illuminant shape to "{shape}".')
illuminant = reshape_sd(illuminant, shape, copy=False)
if reflectances.shape != shape:
runtime_warning(
f'Aligning "{reflectances.name}" reflectances shape to "{shape}".'
)
reflectances = reshape_msds(reflectances, shape, copy=False)
S = np.diag(illuminant.values)
R = np.transpose(reflectances.values)
A = np.dot(np.dot(R, S), eigen_w)
X = np.linalg.lstsq(A, RGB, rcond=None)[0]
X = np.dot(eigen_w, X)
return SpectralDistribution(X, shape.wavelengths)
[docs]
def RGB_to_msds_camera_sensitivities_Jiang2013(
RGB: ArrayLike,
illuminant: SpectralDistribution,
reflectances: MultiSpectralDistributions,
basis_functions=BASIS_FUNCTIONS_DYER2017,
shape: SpectralShape | None = None,
) -> MultiSpectralDistributions:
"""
Recover the camera *RGB* sensitivities for given camera *RGB* values using
*Jiang et al. (2013)* method.
Parameters
----------
RGB
Camera *RGB* values corresponding with ``reflectances``.
illuminant
Illuminant spectral distribution used to produce the camera *RGB*
values.
reflectances
Reflectance spectral distributions used to produce the camera *RGB*
values.
basis_functions
Basis functions for the method. The default is to use the built-in
*sRGB* basis functions, i.e.
:attr:`colour.recovery.BASIS_FUNCTIONS_DYER2017`.
shape
Spectral shape of the recovered camera *RGB* sensitivities,
``illuminant`` and ``reflectances`` will be aligned to it if passed,
otherwise, ``illuminant`` shape is used.
Returns
-------
:class:`colour.RGB_CameraSensitivities`
Recovered camera *RGB* sensitivities.
Examples
--------
>>> from colour.colorimetry import (
... SDS_ILLUMINANTS,
... msds_to_XYZ,
... sds_and_msds_to_msds,
... )
>>> from colour.characterisation import (
... MSDS_CAMERA_SENSITIVITIES,
... SDS_COLOURCHECKERS,
... )
>>> from colour.recovery import SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017
>>> illuminant = SDS_ILLUMINANTS["D65"]
>>> sensitivities = MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"]
>>> reflectances = [
... sd.copy().align(SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017)
... for sd in SDS_COLOURCHECKERS["BabelColor Average"].values()
... ]
>>> reflectances = sds_and_msds_to_msds(reflectances)
>>> RGB = msds_to_XYZ(
... reflectances,
... method="Integration",
... cmfs=sensitivities,
... illuminant=illuminant,
... k=1,
... shape=SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
... )
>>> RGB_to_msds_camera_sensitivities_Jiang2013(
... RGB,
... illuminant,
... reflectances,
... BASIS_FUNCTIONS_DYER2017,
... SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
... ).values # doctest: +ELLIPSIS
array([[ 7.0437846...e-03, 9.2126044...e-03, -7.6408087...e-03],
[ -8.7671560...e-03, 1.1272669...e-02, 6.3743419...e-03],
[ 4.5812685...e-02, 7.1800041...e-02, 4.0000169...e-01],
[ 7.5939115...e-02, 1.1562093...e-01, 7.1152155...e-01],
[ 6.7768573...e-02, 1.5340644...e-01, 8.5266831...e-01],
[ 5.1934131...e-02, 1.8857547...e-01, 9.3895784...e-01],
[ 4.3807056...e-02, 2.6108660...e-01, 9.7213072...e-01],
[ 4.5345321...e-02, 3.7544039...e-01, 9.6145068...e-01],
[ 5.0694514...e-02, 4.4765815...e-01, 8.8648114...e-01],
[ 4.2837825...e-02, 4.5071344...e-01, 7.5177077...e-01],
[ 4.1052030...e-02, 6.1657728...e-01, 5.5273073...e-01],
[ 5.2843697...e-02, 7.8019954...e-01, 3.8226917...e-01],
[ 9.4265543...e-02, 9.1767425...e-01, 2.4035461...e-01],
[ 1.3954459...e-01, 1.0000000...e+00, 1.5537481...e-01],
[ 7.8143883...e-02, 9.2772027...e-01, 1.0440935...e-01],
[ 4.5380529...e-02, 8.5670156...e-01, 6.5122285...e-02],
[ 5.2216496...e-02, 7.5232292...e-01, 3.4295447...e-02],
[ 1.0281652...e-01, 6.2580973...e-01, 2.0949510...e-02],
[ 5.1694176...e-01, 4.9274616...e-01, 1.4852461...e-02],
[ 9.5639793...e-01, 3.4336481...e-01, 1.0898318...e-02],
[ 9.7349477...e-01, 2.0858770...e-01, 7.0049439...e-03],
[ 8.1946141...e-01, 1.1178483...e-01, 4.4718000...e-03],
[ 6.7617415...e-01, 6.5907196...e-02, 4.1013538...e-03],
[ 5.5680417...e-01, 4.4626835...e-02, 4.1852898...e-03],
[ 4.1960111...e-01, 3.3367103...e-02, 4.4916588...e-03],
[ 2.9557834...e-01, 2.3948776...e-02, 4.4593273...e-03],
[ 2.2705062...e-01, 1.8778777...e-02, 4.3169731...e-03],
[ 1.3411835...e-01, 1.0695498...e-02, 3.4119265...e-03],
[ 4.0019556...e-02, 5.5551238...e-03, 1.3679492...e-03],
[ -4.3224053...e-03, 2.4973119...e-03, 3.8030327...e-04],
[ -6.0039541...e-03, 1.5467822...e-03, 5.4039435...e-04]])
"""
R, G, B = tsplit(np.reshape(RGB, [-1, 3]))
shape = optional(shape, illuminant.shape)
R_w, G_w, B_w = tsplit(np.moveaxis(basis_functions, 0, 1))
if illuminant.shape != shape:
runtime_warning(f'Aligning "{illuminant.name}" illuminant shape to "{shape}".')
illuminant = reshape_sd(illuminant, shape, copy=False)
if reflectances.shape != shape:
runtime_warning(
f'Aligning "{reflectances.name}" reflectances shape to "{shape}".'
)
reflectances = reshape_msds(reflectances, shape, copy=False)
S_R = RGB_to_sd_camera_sensitivity_Jiang2013(
R, illuminant, reflectances, R_w, shape
)
S_G = RGB_to_sd_camera_sensitivity_Jiang2013(
G, illuminant, reflectances, G_w, shape
)
S_B = RGB_to_sd_camera_sensitivity_Jiang2013(
B, illuminant, reflectances, B_w, shape
)
msds_camera_sensitivities = RGB_CameraSensitivities([S_R, S_G, S_B])
msds_camera_sensitivities /= np.max(msds_camera_sensitivities.values)
return msds_camera_sensitivities