Source code for colour.recovery.jiang2013

"""
Jiang et al. (2013) - Camera RGB Sensitivities Recovery
=======================================================

Define the objects for camera *RGB* sensitivities recovery using
*Jiang, Liu, Gu and Süsstrunk (2013)* method:

-   :func:`colour.recovery.PCA_Jiang2013`
-   :func:`colour.recovery.RGB_to_sd_camera_sensitivity_Jiang2013`
-   :func:`colour.recovery.RGB_to_msds_camera_sensitivities_Jiang2013`

References
----------
-   :cite:`Jiang2013` : Jiang, J., Liu, D., Gu, J., & Susstrunk, S. (2013).
    What is the space of spectral sensitivity functions for digital color
    cameras? 2013 IEEE Workshop on Applications of Computer Vision (WACV),
    168-179. doi:10.1109/WACV.2013.6475015
"""

from __future__ import annotations

import numpy as np

from colour.algebra import eigen_decomposition
from colour.characterisation import RGB_CameraSensitivities
from colour.colorimetry import (
    MultiSpectralDistributions,
    SpectralDistribution,
    SpectralShape,
    reshape_msds,
    reshape_sd,
)
from colour.hints import (
    ArrayLike,
    Mapping,
    NDArrayFloat,
    Tuple,
    cast,
)
from colour.recovery import BASIS_FUNCTIONS_DYER2017
from colour.utilities import as_float_array, optional, runtime_warning, tsplit

__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "PCA_Jiang2013",
    "RGB_to_sd_camera_sensitivity_Jiang2013",
    "RGB_to_msds_camera_sensitivities_Jiang2013",
]


[docs] def PCA_Jiang2013( msds_camera_sensitivities: Mapping[str, MultiSpectralDistributions], eigen_w_v_count: int | None = None, additional_data: bool = False, ) -> ( Tuple[ Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat], Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat], ] | Tuple[NDArrayFloat, NDArrayFloat, NDArrayFloat] ): """ Perform the *Principal Component Analysis* (PCA) on given camera *RGB* sensitivities. Parameters ---------- msds_camera_sensitivities Camera *RGB* sensitivities. eigen_w_v_count Eigen-values :math:`w` and eigen-vectors :math:`v` count. additional_data Whether to return both the eigen-values :math:`w` and eigen-vectors :math:`v`. Returns ------- :class:`tuple` Tuple of camera *RGB* sensitivities eigen-values :math:`w` and eigen-vectors :math:`v` or tuple of camera *RGB* sensitivities eigen-vectors :math:`v`. Examples -------- >>> from colour.colorimetry import SpectralShape >>> from colour.characterisation import MSDS_CAMERA_SENSITIVITIES >>> shape = SpectralShape(400, 700, 10) >>> camera_sensitivities = { ... camera: msds.copy().align(shape) ... for camera, msds in MSDS_CAMERA_SENSITIVITIES.items() ... } >>> np.array(PCA_Jiang2013(camera_sensitivities)).shape (3, 31, 31) """ R_sensitivities, G_sensitivities, B_sensitivities = [], [], [] def normalised_sensitivity( msds: MultiSpectralDistributions, channel: str ) -> NDArrayFloat: """Return a normalised camera *RGB* sensitivity.""" sensitivity = cast(SpectralDistribution, msds.signals[channel].copy()) return sensitivity.normalise().values for msds in msds_camera_sensitivities.values(): R_sensitivities.append(normalised_sensitivity(msds, msds.labels[0])) G_sensitivities.append(normalised_sensitivity(msds, msds.labels[1])) B_sensitivities.append(normalised_sensitivity(msds, msds.labels[2])) R_w_v = eigen_decomposition( np.vstack(R_sensitivities), eigen_w_v_count, covariance_matrix=True ) G_w_v = eigen_decomposition( np.vstack(G_sensitivities), eigen_w_v_count, covariance_matrix=True ) B_w_v = eigen_decomposition( np.vstack(B_sensitivities), eigen_w_v_count, covariance_matrix=True ) if additional_data: return ( (R_w_v[1], G_w_v[1], B_w_v[1]), (R_w_v[0], G_w_v[0], B_w_v[0]), ) else: return R_w_v[1], G_w_v[1], B_w_v[1]
[docs] def RGB_to_sd_camera_sensitivity_Jiang2013( RGB: ArrayLike, illuminant: SpectralDistribution, reflectances: MultiSpectralDistributions, eigen_w: ArrayLike, shape: SpectralShape | None = None, ) -> SpectralDistribution: """ Recover a single camera *RGB* sensitivity for given camera *RGB* values using *Jiang et al. (2013)* method. Parameters ---------- RGB Camera *RGB* values corresponding with ``reflectances``. illuminant Illuminant spectral distribution used to produce the camera *RGB* values. reflectances Reflectance spectral distributions used to produce the camera *RGB* values. eigen_w Eigen-vectors :math:`v` for the particular camera *RGB* sensitivity being recovered. shape Spectral shape of the recovered camera *RGB* sensitivity, ``illuminant`` and ``reflectances`` will be aligned to it if passed, otherwise, ``illuminant`` shape is used. Returns ------- :class:`colour.RGB_CameraSensitivities` Recovered camera *RGB* sensitivities. Examples -------- >>> from colour.colorimetry import ( ... SDS_ILLUMINANTS, ... msds_to_XYZ, ... sds_and_msds_to_msds, ... ) >>> from colour.characterisation import ( ... MSDS_CAMERA_SENSITIVITIES, ... SDS_COLOURCHECKERS, ... ) >>> from colour.recovery import SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017 >>> illuminant = SDS_ILLUMINANTS["D65"] >>> sensitivities = MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"] >>> reflectances = [ ... sd.copy().align(SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017) ... for sd in SDS_COLOURCHECKERS["BabelColor Average"].values() ... ] >>> reflectances = sds_and_msds_to_msds(reflectances) >>> R, G, B = tsplit( ... msds_to_XYZ( ... reflectances, ... method="Integration", ... cmfs=sensitivities, ... illuminant=illuminant, ... k=1, ... shape=SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017, ... ) ... ) >>> R_w, G_w, B_w = tsplit(np.moveaxis(BASIS_FUNCTIONS_DYER2017, 0, 1)) >>> RGB_to_sd_camera_sensitivity_Jiang2013( ... R, ... illuminant, ... reflectances, ... R_w, ... SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017, ... ) # doctest: +ELLIPSIS SpectralDistribution([[ 4.00000000e+02, 7.2066502...e-04], [ 4.10000000e+02, -8.9698693...e-04], [ 4.20000000e+02, 4.6871961...e-03], [ 4.30000000e+02, 7.7694971...e-03], [ 4.40000000e+02, 6.9335511...e-03], [ 4.50000000e+02, 5.3134947...e-03], [ 4.60000000e+02, 4.4819958...e-03], [ 4.70000000e+02, 4.6393791...e-03], [ 4.80000000e+02, 5.1866668...e-03], [ 4.90000000e+02, 4.3828317...e-03], [ 5.00000000e+02, 4.2001231...e-03], [ 5.10000000e+02, 5.4065544...e-03], [ 5.20000000e+02, 9.6445141...e-03], [ 5.30000000e+02, 1.4277112...e-02], [ 5.40000000e+02, 7.9950718...e-03], [ 5.50000000e+02, 4.6429813...e-03], [ 5.60000000e+02, 5.3423840...e-03], [ 5.70000000e+02, 1.0519383...e-02], [ 5.80000000e+02, 5.2889443...e-02], [ 5.90000000e+02, 9.7851167...e-02], [ 6.00000000e+02, 9.9600382...e-02], [ 6.10000000e+02, 8.3840892...e-02], [ 6.20000000e+02, 6.9180858...e-02], [ 6.30000000e+02, 5.6967854...e-02], [ 6.40000000e+02, 4.2930308...e-02], [ 6.50000000e+02, 3.0241267...e-02], [ 6.60000000e+02, 2.3230047...e-02], [ 6.70000000e+02, 1.3721943...e-02], [ 6.80000000e+02, 4.0944885...e-03], [ 6.90000000e+02, -4.4223475...e-04], [ 7.00000000e+02, -6.1427769...e-04]], SpragueInterpolator, {}, Extrapolator, {'method': 'Constant', 'left': None, 'right': None}) """ RGB = as_float_array(RGB) shape = optional(shape, illuminant.shape) if illuminant.shape != shape: runtime_warning(f'Aligning "{illuminant.name}" illuminant shape to "{shape}".') illuminant = reshape_sd(illuminant, shape, copy=False) if reflectances.shape != shape: runtime_warning( f'Aligning "{reflectances.name}" reflectances shape to "{shape}".' ) reflectances = reshape_msds(reflectances, shape, copy=False) S = np.diag(illuminant.values) R = np.transpose(reflectances.values) A = np.dot(np.dot(R, S), eigen_w) X = np.linalg.lstsq(A, RGB, rcond=None)[0] X = np.dot(eigen_w, X) return SpectralDistribution(X, shape.wavelengths)
[docs] def RGB_to_msds_camera_sensitivities_Jiang2013( RGB: ArrayLike, illuminant: SpectralDistribution, reflectances: MultiSpectralDistributions, basis_functions=BASIS_FUNCTIONS_DYER2017, shape: SpectralShape | None = None, ) -> MultiSpectralDistributions: """ Recover the camera *RGB* sensitivities for given camera *RGB* values using *Jiang et al. (2013)* method. Parameters ---------- RGB Camera *RGB* values corresponding with ``reflectances``. illuminant Illuminant spectral distribution used to produce the camera *RGB* values. reflectances Reflectance spectral distributions used to produce the camera *RGB* values. basis_functions Basis functions for the method. The default is to use the built-in *sRGB* basis functions, i.e. :attr:`colour.recovery.BASIS_FUNCTIONS_DYER2017`. shape Spectral shape of the recovered camera *RGB* sensitivities, ``illuminant`` and ``reflectances`` will be aligned to it if passed, otherwise, ``illuminant`` shape is used. Returns ------- :class:`colour.RGB_CameraSensitivities` Recovered camera *RGB* sensitivities. Examples -------- >>> from colour.colorimetry import ( ... SDS_ILLUMINANTS, ... msds_to_XYZ, ... sds_and_msds_to_msds, ... ) >>> from colour.characterisation import ( ... MSDS_CAMERA_SENSITIVITIES, ... SDS_COLOURCHECKERS, ... ) >>> from colour.recovery import SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017 >>> illuminant = SDS_ILLUMINANTS["D65"] >>> sensitivities = MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"] >>> reflectances = [ ... sd.copy().align(SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017) ... for sd in SDS_COLOURCHECKERS["BabelColor Average"].values() ... ] >>> reflectances = sds_and_msds_to_msds(reflectances) >>> RGB = msds_to_XYZ( ... reflectances, ... method="Integration", ... cmfs=sensitivities, ... illuminant=illuminant, ... k=1, ... shape=SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017, ... ) >>> RGB_to_msds_camera_sensitivities_Jiang2013( ... RGB, ... illuminant, ... reflectances, ... BASIS_FUNCTIONS_DYER2017, ... SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017, ... ).values # doctest: +ELLIPSIS array([[ 7.0437846...e-03, 9.2126044...e-03, -7.6408087...e-03], [ -8.7671560...e-03, 1.1272669...e-02, 6.3743419...e-03], [ 4.5812685...e-02, 7.1800041...e-02, 4.0000169...e-01], [ 7.5939115...e-02, 1.1562093...e-01, 7.1152155...e-01], [ 6.7768573...e-02, 1.5340644...e-01, 8.5266831...e-01], [ 5.1934131...e-02, 1.8857547...e-01, 9.3895784...e-01], [ 4.3807056...e-02, 2.6108660...e-01, 9.7213072...e-01], [ 4.5345321...e-02, 3.7544039...e-01, 9.6145068...e-01], [ 5.0694514...e-02, 4.4765815...e-01, 8.8648114...e-01], [ 4.2837825...e-02, 4.5071344...e-01, 7.5177077...e-01], [ 4.1052030...e-02, 6.1657728...e-01, 5.5273073...e-01], [ 5.2843697...e-02, 7.8019954...e-01, 3.8226917...e-01], [ 9.4265543...e-02, 9.1767425...e-01, 2.4035461...e-01], [ 1.3954459...e-01, 1.0000000...e+00, 1.5537481...e-01], [ 7.8143883...e-02, 9.2772027...e-01, 1.0440935...e-01], [ 4.5380529...e-02, 8.5670156...e-01, 6.5122285...e-02], [ 5.2216496...e-02, 7.5232292...e-01, 3.4295447...e-02], [ 1.0281652...e-01, 6.2580973...e-01, 2.0949510...e-02], [ 5.1694176...e-01, 4.9274616...e-01, 1.4852461...e-02], [ 9.5639793...e-01, 3.4336481...e-01, 1.0898318...e-02], [ 9.7349477...e-01, 2.0858770...e-01, 7.0049439...e-03], [ 8.1946141...e-01, 1.1178483...e-01, 4.4718000...e-03], [ 6.7617415...e-01, 6.5907196...e-02, 4.1013538...e-03], [ 5.5680417...e-01, 4.4626835...e-02, 4.1852898...e-03], [ 4.1960111...e-01, 3.3367103...e-02, 4.4916588...e-03], [ 2.9557834...e-01, 2.3948776...e-02, 4.4593273...e-03], [ 2.2705062...e-01, 1.8778777...e-02, 4.3169731...e-03], [ 1.3411835...e-01, 1.0695498...e-02, 3.4119265...e-03], [ 4.0019556...e-02, 5.5551238...e-03, 1.3679492...e-03], [ -4.3224053...e-03, 2.4973119...e-03, 3.8030327...e-04], [ -6.0039541...e-03, 1.5467822...e-03, 5.4039435...e-04]]) """ R, G, B = tsplit(np.reshape(RGB, [-1, 3])) shape = optional(shape, illuminant.shape) R_w, G_w, B_w = tsplit(np.moveaxis(basis_functions, 0, 1)) if illuminant.shape != shape: runtime_warning(f'Aligning "{illuminant.name}" illuminant shape to "{shape}".') illuminant = reshape_sd(illuminant, shape, copy=False) if reflectances.shape != shape: runtime_warning( f'Aligning "{reflectances.name}" reflectances shape to "{shape}".' ) reflectances = reshape_msds(reflectances, shape, copy=False) S_R = RGB_to_sd_camera_sensitivity_Jiang2013( R, illuminant, reflectances, R_w, shape ) S_G = RGB_to_sd_camera_sensitivity_Jiang2013( G, illuminant, reflectances, G_w, shape ) S_B = RGB_to_sd_camera_sensitivity_Jiang2013( B, illuminant, reflectances, B_w, shape ) msds_camera_sensitivities = RGB_CameraSensitivities([S_R, S_G, S_B]) msds_camera_sensitivities /= np.max(msds_camera_sensitivities.values) return msds_camera_sensitivities