Source code for colour.utilities.metrics

# -*- coding: utf-8 -*-
"""
Metrics
=======

Defines various metrics:

-   :func:`colour.utilities.metric_mse`
-   :func:`colour.utilities.metric_psnr`

References
----------
-   :cite:`Wikipedia2003c` : Wikipedia. (2003). Mean squared error. Retrieved
    March 5, 2018, from https://en.wikipedia.org/wiki/Mean_squared_error
-   :cite:`Wikipedia2004` : Wikipedia. (2004). Peak signal-to-noise ratio.
    Retrieved March 5, 2018, from
    https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
"""

import numpy as np

from colour.utilities import as_float_array

__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013-2021 - Colour Developers'
__license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-developers@colour-science.org'
__status__ = 'Production'

__all__ = ['metric_mse', 'metric_psnr']


[docs]def metric_mse(a, b, axis=None): """ Computes the mean squared error (MSE) or mean squared deviation (MSD) between given *array_like* :math:`a` and :math:`b` variables. Parameters ---------- a : array_like :math:`a` variable. b : array_like :math:`b` variable. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. Returns ------- float Mean squared error (MSE). References ---------- :cite:`Wikipedia2003c` Examples -------- >>> a = np.array([0.48222001, 0.31654775, 0.22070353]) >>> b = a * 0.9 >>> metric_mse(a, b) # doctest: +ELLIPSIS 0.0012714... """ return np.mean((as_float_array(a) - as_float_array(b)) ** 2, axis=axis)
[docs]def metric_psnr(a, b, max_a=1, axis=None): """ Computes the peak signal-to-noise ratio (PSNR) between given *array_like* :math:`a` and :math:`b` variables. Parameters ---------- a : array_like :math:`a` variable. b : array_like :math:`b` variable. max_a : numeric, optional Maximum possible pixel value of the :math:`a` variable. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. Returns ------- float Peak signal-to-noise ratio (PSNR). References ---------- :cite:`Wikipedia2004` Examples -------- >>> a = np.array([0.48222001, 0.31654775, 0.22070353]) >>> b = a * 0.9 >>> metric_psnr(a, b) # doctest: +ELLIPSIS 28.9568515... """ return 10 * np.log10(max_a ** 2 / metric_mse(a, b, axis))