colour.colour_correction_matrix

colour.colour_correction_matrix(M_T, M_R, method='Cheung 2004', **kwargs)[source]

Computes a colour correction matrix from given \(M_T\) colour array to \(M_R\) colour array.

The resulting colour correction matrix is computed using multiple linear or polynomial regression using given method. The purpose of that object is for example the matching of two ColorChecker colour rendition charts together.

Parameters:
  • M_T (array_like, (n, 3)) – Test array \(M_T\) to fit onto array \(M_R\).
  • M_R (array_like, (n, 3)) – Reference array the array \(M_T\) will be colour fitted against.
  • method (unicode, optional) – {‘Cheung 2004’, ‘Finlayson 2015’, ‘Vandermonde’}, Computation method.
Other Parameters:
 
Returns:

Colour correction matrix.

Return type:

ndarray, (n, 3)

References

[Cheung2004], [Finlayson2015], [Westland2004], [Wikipedia2003e]

Examples

>>> M_T = np.array(
...     [[0.17224810, 0.09170660, 0.06416938],
...      [0.49189645, 0.27802050, 0.21923399],
...      [0.10999751, 0.18658946, 0.29938611],
...      [0.11666120, 0.14327905, 0.05713804],
...      [0.18988879, 0.18227649, 0.36056247],
...      [0.12501329, 0.42223442, 0.37027445],
...      [0.64785606, 0.22396782, 0.03365194],
...      [0.06761093, 0.11076896, 0.39779139],
...      [0.49101797, 0.09448929, 0.11623839],
...      [0.11622386, 0.04425753, 0.14469986],
...      [0.36867946, 0.44545230, 0.06028681],
...      [0.61632937, 0.32323906, 0.02437089],
...      [0.03016472, 0.06153243, 0.29014596],
...      [0.11103655, 0.30553067, 0.08149137],
...      [0.41162190, 0.05816656, 0.04845934],
...      [0.73339206, 0.53075188, 0.02475212],
...      [0.47347718, 0.08834792, 0.30310315],
...      [0.00000000, 0.25187016, 0.35062450],
...      [0.76809639, 0.78486240, 0.77808297],
...      [0.53822392, 0.54307997, 0.54710883],
...      [0.35458526, 0.35318419, 0.35524431],
...      [0.17976704, 0.18000531, 0.17991488],
...      [0.09351417, 0.09510603, 0.09675027],
...      [0.03405071, 0.03295077, 0.03702047]]
... )
>>> M_R = np.array(
...     [[0.15579559, 0.09715755, 0.07514556],
...      [0.39113140, 0.25943419, 0.21266708],
...      [0.12824821, 0.18463570, 0.31508023],
...      [0.12028974, 0.13455659, 0.07408400],
...      [0.19368988, 0.21158946, 0.37955964],
...      [0.19957425, 0.36085439, 0.40678123],
...      [0.48896605, 0.20691688, 0.05816533],
...      [0.09775522, 0.16710693, 0.47147724],
...      [0.39358649, 0.12233400, 0.10526425],
...      [0.10780332, 0.07258529, 0.16151473],
...      [0.27502671, 0.34705454, 0.09728099],
...      [0.43980441, 0.26880559, 0.05430533],
...      [0.05887212, 0.11126272, 0.38552469],
...      [0.12705825, 0.25787860, 0.13566464],
...      [0.35612929, 0.07933258, 0.05118732],
...      [0.48131976, 0.42082843, 0.07120612],
...      [0.34665585, 0.15170714, 0.24969804],
...      [0.08261116, 0.24588716, 0.48707733],
...      [0.66054904, 0.65941137, 0.66376412],
...      [0.48051509, 0.47870296, 0.48230082],
...      [0.33045354, 0.32904184, 0.33228886],
...      [0.18001305, 0.17978567, 0.18004416],
...      [0.10283975, 0.10424680, 0.10384975],
...      [0.04742204, 0.04772203, 0.04914226]]
... )
>>> colour_correction_matrix(M_T, M_R)  # doctest: +ELLIPSIS
array([[ 0.6982266...,  0.0307162...,  0.1621042...],
       [ 0.0689349...,  0.6757961...,  0.1643038...],
       [-0.0631495...,  0.0921247...,  0.9713415...]])