Source code for colour.difference.stress
"""
Standardized Residual Sum of Squares (STRESS) Index
===================================================
Define the *Kruskal's Standardized Residual Sum of Squares (:math:`STRESS`)*
index:
- :func:`colour.index_stress_Garcia2007`: :math:`STRESS` index computation
according to *García, Huertas, Melgosa and Cui (2007)* method.
- :func:`colour.index_stress`: *Lightness* :math:`STRESS` index computation
according to given method.
References
----------
- :cite:`Garcia2007` : García, P. A., Huertas, R., Melgosa, M., & Cui, G.
(2007). Measurement of the relationship between perceived and computed
color differences. Journal of the Optical Society of America A, 24(7),
1823. doi:10.1364/JOSAA.24.001823
"""
from __future__ import annotations
import numpy as np
from colour.algebra import sdiv, sdiv_mode
from colour.hints import ArrayLike, Literal, NDArrayFloat
from colour.utilities import (
CanonicalMapping,
as_float,
as_float_array,
validate_method,
)
__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"
__all__ = [
"index_stress_Garcia2007",
"INDEX_STRESS_METHODS",
"index_stress",
]
[docs]
def index_stress_Garcia2007(d_E: ArrayLike, d_V: ArrayLike) -> NDArrayFloat:
"""
Compute the
*Kruskal's Standardized Residual Sum of Squares (:math:`STRESS`)*
index according to *García, Huertas, Melgosa and Cui (2007)* method.
Parameters
----------
d_E
Computed colour difference array :math:`\\Delta E`.
d_V
Computed colour difference array :math:`\\Delta V`.
Returns
-------
:class:`numpy.ndarray`
:math:`STRESS` index.
References
----------
:cite:`Garcia2007`
Examples
--------
>>> d_E = np.array([2.0425, 2.8615, 3.4412])
>>> d_V = np.array([1.2644, 1.2630, 1.8731])
>>> index_stress_Garcia2007(d_E, d_V) # doctest: +ELLIPSIS
0.1211709...
"""
d_E = as_float_array(d_E)
d_V = as_float_array(d_V)
with sdiv_mode():
F_1 = sdiv(np.sum(d_E**2), np.sum(d_E * d_V))
stress = np.sqrt(sdiv(np.sum((d_E - F_1 * d_V) ** 2), np.sum(F_1**2 * d_V**2)))
return as_float(stress)
INDEX_STRESS_METHODS: CanonicalMapping = CanonicalMapping(
{
"Garcia 2007": index_stress_Garcia2007,
}
)
INDEX_STRESS_METHODS.__doc__ = """
Supported :math:`STRESS` index computation methods.
References
----------
:cite:`Garcia2007`
"""
[docs]
def index_stress(
d_E: ArrayLike,
d_V: ArrayLike,
method: Literal["Garcia 2007"] | str = "Garcia 2007",
) -> NDArrayFloat:
"""
Compute the
*Kruskal's Standardized Residual Sum of Squares (:math:`STRESS`)*
index according to given method.
Parameters
----------
d_E
Computed colour difference array :math:`\\Delta E`.
d_V
Computed colour difference array :math:`\\Delta V`.
method
Computation method.
Returns
-------
:class:`numpy.ndarray`
:math:`STRESS` index.
References
----------
:cite:`Garcia2007`
Examples
--------
>>> d_E = np.array([2.0425, 2.8615, 3.4412])
>>> d_V = np.array([1.2644, 1.2630, 1.8731])
>>> index_stress(d_E, d_V) # doctest: +ELLIPSIS
0.1211709...
"""
method = validate_method(method, tuple(INDEX_STRESS_METHODS))
function = INDEX_STRESS_METHODS[method]
return function(d_E, d_V)