Source code for colour.geometry.intersection

"""
Intersection Utilities
======================

Define the geometry intersection utilities objects.

References
----------
-   :cite:`Bourkea` : Bourke, P. (n.d.). Intersection point of two line
    segments in 2 dimensions. Retrieved January 15, 2016, from
    http://paulbourke.net/geometry/pointlineplane/
-   :cite:`Erdema` : Erdem, U. M. (n.d.). Fast Line Segment Intersection.
    Retrieved January 15, 2016, from
    http://www.mathworks.com/matlabcentral/fileexchange/\
27205-fast-line-segment-intersection
-   :cite:`Saeedna` : Saeedn. (n.d.). Extend a line segment a specific
    distance. Retrieved January 16, 2016, from
    http://stackoverflow.com/questions/7740507/\
extend-a-line-segment-a-specific-distance
"""

from __future__ import annotations

from dataclasses import dataclass

import numpy as np

from colour.algebra import euclidean_distance, sdiv, sdiv_mode
from colour.hints import ArrayLike, NDArrayFloat
from colour.utilities import as_float_array, tsplit, tstack

__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "extend_line_segment",
    "LineSegmentsIntersections_Specification",
    "intersect_line_segments",
]


[docs] def extend_line_segment( a: ArrayLike, b: ArrayLike, distance: float = 1 ) -> NDArrayFloat: """ Extend the line segment defined by point arrays :math:`a` and :math:`b` by given distance and return the new end point. Parameters ---------- a Point array :math:`a`. b Point array :math:`b`. distance Distance to extend the line segment. Returns ------- :class:`numpy.ndarray` New end point. References ---------- :cite:`Saeedna` Notes ----- - Input line segment points coordinates are 2d coordinates. Examples -------- >>> a = np.array([0.95694934, 0.13720932]) >>> b = np.array([0.28382835, 0.60608318]) >>> extend_line_segment(a, b) # doctest: +ELLIPSIS array([-0.5367248..., 1.1776534...]) """ x_a, y_a = tsplit(a) x_b, y_b = tsplit(b) d = euclidean_distance(a, b) with sdiv_mode(): x_c = x_b + sdiv(x_b - x_a, d) * distance y_c = y_b + sdiv(y_b - y_a, d) * distance xy_c = tstack([x_c, y_c]) return xy_c
[docs] @dataclass class LineSegmentsIntersections_Specification: """ Define the specification for intersection of line segments :math:`l_1` and :math:`l_2` returned by :func:`colour.algebra.intersect_line_segments` definition. Parameters ---------- xy Array of :math:`l_1` and :math:`l_2` line segments intersections coordinates. Non existing segments intersections coordinates are set with `np.nan`. intersect Array of *bool* indicating if line segments :math:`l_1` and :math:`l_2` intersect. parallel Array of :class:`bool` indicating if line segments :math:`l_1` and :math:`l_2` are parallel. coincident Array of :class:`bool` indicating if line segments :math:`l_1` and :math:`l_2` are coincident. """ xy: NDArrayFloat intersect: NDArrayFloat parallel: NDArrayFloat coincident: NDArrayFloat
[docs] def intersect_line_segments( l_1: ArrayLike, l_2: ArrayLike ) -> LineSegmentsIntersections_Specification: """ Compute :math:`l_1` line segments intersections with :math:`l_2` line segments. Parameters ---------- l_1 :math:`l_1` line segments array, each row is a line segment such as (:math:`x_1`, :math:`y_1`, :math:`x_2`, :math:`y_2`) where (:math:`x_1`, :math:`y_1`) and (:math:`x_2`, :math:`y_2`) are respectively the start and end points of :math:`l_1` line segments. l_2 :math:`l_2` line segments array, each row is a line segment such as (:math:`x_3`, :math:`y_3`, :math:`x_4`, :math:`y_4`) where (:math:`x_3`, :math:`y_3`) and (:math:`x_4`, :math:`y_4`) are respectively the start and end points of :math:`l_2` line segments. Returns ------- :class:`colour.algebra.LineSegmentsIntersections_Specification` Line segments intersections specification. References ---------- :cite:`Bourkea`, :cite:`Erdema` Notes ----- - Input line segments points coordinates are 2d coordinates. Examples -------- >>> l_1 = np.array( ... [ ... [[0.15416284, 0.7400497], [0.26331502, 0.53373939]], ... [[0.01457496, 0.91874701], [0.90071485, 0.03342143]], ... ] ... ) >>> l_2 = np.array( ... [ ... [[0.95694934, 0.13720932], [0.28382835, 0.60608318]], ... [[0.94422514, 0.85273554], [0.00225923, 0.52122603]], ... [[0.55203763, 0.48537741], [0.76813415, 0.16071675]], ... ] ... ) >>> s = intersect_line_segments(l_1, l_2) >>> s.xy # doctest: +ELLIPSIS array([[[ nan, nan], [ 0.2279184..., 0.6006430...], [ nan, nan]], <BLANKLINE> [[ 0.4281451..., 0.5055568...], [ 0.3056055..., 0.6279838...], [ 0.7578749..., 0.1761301...]]]) >>> s.intersect array([[False, True, False], [ True, True, True]], dtype=bool) >>> s.parallel array([[False, False, False], [False, False, False]], dtype=bool) >>> s.coincident array([[False, False, False], [False, False, False]], dtype=bool) """ l_1 = as_float_array(l_1) l_2 = as_float_array(l_2) l_1 = np.reshape(l_1, (-1, 4)) l_2 = np.reshape(l_2, (-1, 4)) r_1, c_1 = l_1.shape[0], l_1.shape[1] r_2, c_2 = l_2.shape[0], l_2.shape[1] x_1, y_1, x_2, y_2 = (np.tile(l_1[:, i, None], (1, r_2)) for i in range(c_1)) l_2 = np.transpose(l_2) x_3, y_3, x_4, y_4 = (np.tile(l_2[i, :], (r_1, 1)) for i in range(c_2)) x_4_x_3 = x_4 - x_3 y_1_y_3 = y_1 - y_3 y_4_y_3 = y_4 - y_3 x_1_x_3 = x_1 - x_3 x_2_x_1 = x_2 - x_1 y_2_y_1 = y_2 - y_1 numerator_a = x_4_x_3 * y_1_y_3 - y_4_y_3 * x_1_x_3 numerator_b = x_2_x_1 * y_1_y_3 - y_2_y_1 * x_1_x_3 denominator = y_4_y_3 * x_2_x_1 - x_4_x_3 * y_2_y_1 with sdiv_mode("Ignore"): u_a = sdiv(numerator_a, denominator) u_b = sdiv(numerator_b, denominator) intersect = np.logical_and.reduce((u_a >= 0, u_a <= 1, u_b >= 0, u_b <= 1)) xy = tstack([x_1 + x_2_x_1 * u_a, y_1 + y_2_y_1 * u_a]) xy[~intersect] = np.nan parallel = denominator == 0 coincident = np.logical_and.reduce((numerator_a == 0, numerator_b == 0, parallel)) return LineSegmentsIntersections_Specification(xy, intersect, parallel, coincident)