Source code for colour.models.rgb.transfer_functions.canon

"""
Canon Log Encodings
===================

Define the *Canon Log* encodings:

-   :attr:`colour.models.CANON_LOG_ENCODING_METHODS`
-   :func:`colour.models.log_encoding_CanonLog`
-   :attr:`colour.models.CANON_LOG_DECODING_METHODS`
-   :func:`colour.models.log_decoding_CanonLog`
-   :attr:`colour.models.CANON_LOG_2_ENCODING_METHODS`
-   :func:`colour.models.log_encoding_CanonLog2`
-   :attr:`colour.models.CANON_LOG_2_DECODING_METHODS`
-   :func:`colour.models.log_decoding_CanonLog2`
-   :attr:`colour.models.CANON_LOG_3_ENCODING_METHODS`
-   :func:`colour.models.log_encoding_CanonLog3`
-   :attr:`colour.models.CANON_LOG_3_DECODING_METHODS`
-   :func:`colour.models.log_decoding_CanonLog3`

Notes
-----
-   :cite:`Canon2016` is available as a *Drivers & Downloads* *Software* for
    Windows 7 *Operating System*, a copy of the archive is hosted at
    this url: https://drive.google.com/open?id=0B_IQZQdc4Vy8ZGYyY29pMEVwZU0
-   :cite:`Canon2020` is available as a *Drivers & Downloads* *Software* for
    Windows 10 *Operating System*, a copy of the archive is hosted at
    this url: https://drive.google.com/open?id=1Vcz8RVIXgXL54lhZsOwGUjjVZRObZSc5

References
----------
-   :cite:`Canon2016` : Canon. (2016). Input Transform Version 201612 for EOS
    C300 Mark II. Retrieved August 23, 2016, from https://www.usa.canon.com/\
internet/portal/us/home/support/details/cameras/cinema-eos/eos-c300-mark-ii
-   :cite:`Canon2020` : Canon. (2020). Input Transform Version 202007 for EOS
    C300 Mark II. Retrieved July 16, 2023, from https://www.usa.canon.com/\
internet/portal/us/home/support/details/cameras/cinema-eos/eos-c300-mark-ii
-   :cite:`Thorpe2012a` : Thorpe, L. (2012). CANON-LOG TRANSFER CHARACTERISTIC.
    Retrieved September 25, 2014, from
    http://downloads.canon.com/CDLC/Canon-Log_Transfer_Characteristic_6-20-2012.pdf
"""

from __future__ import annotations

import numpy as np

from colour.hints import ArrayLike, Literal, NDArrayFloat
from colour.models.rgb.transfer_functions import full_to_legal, legal_to_full
from colour.utilities import (
    CanonicalMapping,
    as_float,
    domain_range_scale,
    from_range_1,
    to_domain_1,
    validate_method,
)

__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "log_encoding_CanonLog_v1",
    "log_decoding_CanonLog_v1",
    "log_encoding_CanonLog_v1_2",
    "log_decoding_CanonLog_v1_2",
    "CANON_LOG_ENCODING_METHODS",
    "log_encoding_CanonLog",
    "CANON_LOG_DECODING_METHODS",
    "log_decoding_CanonLog",
    "log_encoding_CanonLog2_v1",
    "log_decoding_CanonLog2_v1",
    "log_encoding_CanonLog2_v1_2",
    "log_decoding_CanonLog2_v1_2",
    "CANON_LOG_2_ENCODING_METHODS",
    "log_encoding_CanonLog2",
    "CANON_LOG_2_DECODING_METHODS",
    "log_decoding_CanonLog2",
    "log_encoding_CanonLog3_v1",
    "log_decoding_CanonLog3_v1",
    "log_encoding_CanonLog3_v1_2",
    "log_decoding_CanonLog3_v1_2",
    "CANON_LOG_3_ENCODING_METHODS",
    "log_encoding_CanonLog3",
    "CANON_LOG_3_DECODING_METHODS",
    "log_decoding_CanonLog3",
]


def log_encoding_CanonLog_v1(
    x: ArrayLike,
    bit_depth: int = 10,
    out_normalised_code_value: bool = True,
    in_reflection: bool = True,
) -> NDArrayFloat:
    """
    Define the *Canon Log* v1 log encoding curve / opto-electronic transfer
    function.

    Parameters
    ----------
    x
        Linear data :math:`x`.
    bit_depth
        Bit-depth used for conversion.
    out_normalised_code_value
        Whether the *Canon Log* non-linear data is encoded as normalised code
        values.
    in_reflection
        Whether the light level :math:`x` to a camera is reflection.

    Returns
    -------
    :class:`numpy.ndarray`
        *Canon Log* non-linear data.

    References
    ----------
    :cite:`Canon2016`, :cite:`Thorpe2012a`

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``x``      | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    +------------+-----------------------+---------------+
    | **Range**  | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``clog``   | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    Examples
    --------
    >>> log_encoding_CanonLog_v1(0.18) * 100  # doctest: +ELLIPSIS
    34.3389651...

    The values of *Table 2 Canon-Log Code Values* table in :cite:`Thorpe2012a`
    are obtained as follows:

    >>> x = np.array([0, 2, 18, 90, 720]) / 100
    >>> np.around(log_encoding_CanonLog_v1(x) * (2**10 - 1)).astype(np.int_)
    array([ 128,  169,  351,  614, 1016])
    >>> np.around(log_encoding_CanonLog_v1(x, 10, False) * 100, 1)
    array([   7.3,   12. ,   32.8,   62.7,  108.7])
    """

    x = to_domain_1(x)

    if in_reflection:
        x = x / 0.9

    with domain_range_scale("ignore"):
        clog = np.where(
            x < log_decoding_CanonLog_v1(0.0730597, bit_depth, False),
            -(0.529136 * (np.log10(-x * 10.1596 + 1)) - 0.0730597),
            0.529136 * np.log10(10.1596 * x + 1) + 0.0730597,
        )

    clog_cv = full_to_legal(clog, bit_depth) if out_normalised_code_value else clog

    return as_float(from_range_1(clog_cv))


def log_decoding_CanonLog_v1(
    clog: ArrayLike,
    bit_depth: int = 10,
    in_normalised_code_value: bool = True,
    out_reflection: bool = True,
) -> NDArrayFloat:
    """
    Define the *Canon Log* v1 log decoding curve / electro-optical transfer
    function.

    Parameters
    ----------
    clog
        *Canon Log* non-linear data.
    bit_depth
        Bit-depth used for conversion.
    in_normalised_code_value
        Whether the *Canon Log* non-linear data is encoded with normalised
        code values.
    out_reflection
        Whether the light level :math:`x` to a camera is reflection.

    Returns
    -------
    :class:`numpy.ndarray`
        Linear data :math:`x`.

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``clog``   | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    +------------+-----------------------+---------------+
    | **Range**  | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``x``      | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    References
    ----------
    :cite:`Canon2016`, :cite:`Thorpe2012a`

    Examples
    --------
    >>> log_decoding_CanonLog_v1(34.338965172606912 / 100)  # doctest: +ELLIPSIS
    0.17999999...
    """

    clog = to_domain_1(clog)

    clog = legal_to_full(clog, bit_depth) if in_normalised_code_value else clog

    x = np.where(
        clog < 0.0730597,
        -(10 ** ((0.0730597 - clog) / 0.529136) - 1) / 10.1596,
        (10 ** ((clog - 0.0730597) / 0.529136) - 1) / 10.1596,
    )

    if out_reflection:
        x = x * 0.9

    return as_float(from_range_1(x))


def log_encoding_CanonLog_v1_2(
    x: ArrayLike,
    bit_depth: int = 10,
    out_normalised_code_value: bool = True,
    in_reflection: bool = True,
) -> NDArrayFloat:
    """
    Define the *Canon Log* v1.2 log encoding curve / opto-electronic transfer
    function.

    Parameters
    ----------
    x
        Linear data :math:`x`.
    bit_depth
        Bit-depth used for conversion.
    out_normalised_code_value
        Whether the *Canon Log* non-linear data is encoded as normalised code
        values.
    in_reflection
        Whether the light level :math:`x` to a camera is reflection.

    Returns
    -------
    :class:`numpy.ndarray`
        *Canon Log* non-linear data.

    References
    ----------
    :cite:`Canon2020`

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``x``      | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    +------------+-----------------------+---------------+
    | **Range**  | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``clog``   | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    Examples
    --------
    >>> log_encoding_CanonLog_v1_2(0.18) * 100  # doctest: +ELLIPSIS
    34.3389649...
    """

    x = to_domain_1(x)

    if in_reflection:
        x = x / 0.9

    with domain_range_scale("ignore"):
        clog = np.where(
            x < (log_decoding_CanonLog_v1_2(0.12512248, bit_depth, True)),
            -(0.45310179 * (np.log10(-x * 10.1596 + 1)) - 0.12512248),
            0.45310179 * np.log10(10.1596 * x + 1) + 0.12512248,
        )

    # NOTE: *Canon Log* v1.2 constants are expressed in legal range
    # (studio swing).
    clog_cv = clog if out_normalised_code_value else legal_to_full(clog, bit_depth)

    return as_float(from_range_1(clog_cv))


def log_decoding_CanonLog_v1_2(
    clog: ArrayLike,
    bit_depth: int = 10,
    in_normalised_code_value: bool = True,
    out_reflection: bool = True,
) -> NDArrayFloat:
    """
    Define the *Canon Log* v1.2 log decoding curve / electro-optical transfer
    function.

    Parameters
    ----------
    clog
        *Canon Log* non-linear data.
    bit_depth
        Bit-depth used for conversion.
    in_normalised_code_value
        Whether the *Canon Log* non-linear data is encoded with normalised
        code values.
    out_reflection
        Whether the light level :math:`x` to a camera is reflection.

    Returns
    -------
    :class:`numpy.ndarray`
        Linear data :math:`x`.

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``clog``   | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    +------------+-----------------------+---------------+
    | **Range**  | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``x``      | [0, 1]                | [0, 1]        |
    +------------+-----------------------+---------------+

    References
    ----------
    :cite:`Canon2020`

    Examples
    --------
    >>> log_decoding_CanonLog_v1_2(34.338964929528061 / 100)
    ... # doctest: +ELLIPSIS
    0.17999999...
    """

    clog = to_domain_1(clog)

    # NOTE: *Canon Log* v1.2 constants are expressed in legal range
    # (studio swing).
    clog = clog if in_normalised_code_value else full_to_legal(clog, bit_depth)

    x = np.where(
        clog < 0.12512248,
        -(10 ** ((0.12512248 - clog) / 0.45310179) - 1) / 10.1596,
        (10 ** ((clog - 0.12512248) / 0.45310179) - 1) / 10.1596,
    )

    if out_reflection:
        x = x * 0.9

    return as_float(from_range_1(x))


CANON_LOG_ENCODING_METHODS: CanonicalMapping = CanonicalMapping(
    {
        "v1": log_encoding_CanonLog_v1,
        "v1.2": log_encoding_CanonLog_v1_2,
    }
)
CANON_LOG_ENCODING_METHODS.__doc__ = """
Supported *CanonLog* log encoding curve / opto-electronic transfer function
methods.

References
----------
:cite:`Canon2016`, :cite:`Canon2020`
"""


[docs] def log_encoding_CanonLog( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, method: Literal["v1", "v1.2"] | str = "v1.2", ) -> NDArrayFloat: """ Define the *Canon Log* log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. method Computation method. Returns ------- :class:`numpy.ndarray` *Canon Log* non-linear data. References ---------- :cite:`Canon2016`, :cite:`Canon2020`, :cite:`Thorpe2012a` Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ Examples -------- >>> log_encoding_CanonLog(0.18) * 100 # doctest: +ELLIPSIS 34.3389649... >>> log_encoding_CanonLog(0.18, method="v1") * 100 # doctest: +ELLIPSIS 34.3389651... The values of *Table 2 Canon-Log Code Values* table in :cite:`Thorpe2012a` are obtained as follows: >>> x = np.array([0, 2, 18, 90, 720]) / 100 >>> np.around(log_encoding_CanonLog(x, method="v1") * (2**10 - 1)).astype(np.int_) array([ 128, 169, 351, 614, 1016]) >>> np.around(log_encoding_CanonLog(x, 10, False, method="v1") * 100, 1) array([ 7.3, 12. , 32.8, 62.7, 108.7]) """ method = validate_method(method, tuple(CANON_LOG_ENCODING_METHODS)) return CANON_LOG_ENCODING_METHODS[method]( x, bit_depth, out_normalised_code_value, in_reflection )
CANON_LOG_DECODING_METHODS: CanonicalMapping = CanonicalMapping( { "v1": log_decoding_CanonLog_v1, "v1.2": log_decoding_CanonLog_v1_2, } ) CANON_LOG_DECODING_METHODS.__doc__ = """ Supported *CanonLog* log decoding curve / electro-optical transfer function methods. References ---------- :cite:`Canon2016`, :cite:`Canon2020` """
[docs] def log_decoding_CanonLog( clog: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, method: Literal["v1", "v1.2"] | str = "v1.2", ) -> NDArrayFloat: """ Define the *Canon Log* log decoding curve / electro-optical transfer function. Parameters ---------- clog *Canon Log* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. method Computation method. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016`, :cite:`Canon2020`, :cite:`Thorpe2012a` Examples -------- >>> log_decoding_CanonLog(34.338964929528061 / 100) # doctest: +ELLIPSIS 0.17999999... >>> log_decoding_CanonLog(34.338965172606912 / 100, method="v1") ... # doctest: +ELLIPSIS 0.17999999... """ method = validate_method(method, tuple(CANON_LOG_DECODING_METHODS)) return CANON_LOG_DECODING_METHODS[method]( clog, bit_depth, in_normalised_code_value, out_reflection )
def log_encoding_CanonLog2_v1( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 2* v1 log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log 2* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` *Canon Log 2* non-linear data. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016` Examples -------- >>> log_encoding_CanonLog2_v1(0.18) * 100 # doctest: +ELLIPSIS 39.8254694... """ x = to_domain_1(x) if in_reflection: x = x / 0.9 with domain_range_scale("ignore"): clog2 = np.where( x < log_decoding_CanonLog2_v1(0.035388128, bit_depth, False), -(0.281863093 * (np.log10(-x * 87.09937546 + 1)) - 0.035388128), 0.281863093 * np.log10(x * 87.09937546 + 1) + 0.035388128, ) clog2_cv = full_to_legal(clog2, bit_depth) if out_normalised_code_value else clog2 return as_float(from_range_1(clog2_cv)) def log_decoding_CanonLog2_v1( clog2: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 2* v1 log decoding curve / electro-optical transfer function. Parameters ---------- clog2 *Canon Log 2* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log 2* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016` Examples -------- >>> log_decoding_CanonLog2_v1(39.825469498316735 / 100) # doctest: +ELLIPSIS 0.1799999... """ clog2 = to_domain_1(clog2) clog2 = legal_to_full(clog2, bit_depth) if in_normalised_code_value else clog2 x = np.where( clog2 < 0.035388128, -(10 ** ((0.035388128 - clog2) / 0.281863093) - 1) / 87.09937546, (10 ** ((clog2 - 0.035388128) / 0.281863093) - 1) / 87.09937546, ) if out_reflection: x = x * 0.9 return as_float(from_range_1(x)) def log_encoding_CanonLog2_v1_2( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 2* v1.2 log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log 2* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` *Canon Log 2* non-linear data. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2020` Examples -------- >>> log_encoding_CanonLog2_v1_2(0.18) * 100 # doctest: +ELLIPSIS 39.8254692... """ x = to_domain_1(x) if in_reflection: x = x / 0.9 with domain_range_scale("ignore"): clog2 = np.where( x < (log_decoding_CanonLog2_v1_2(0.092864125, bit_depth, True)), -(0.24136077 * (np.log10(-x * 87.09937546 + 1)) - 0.092864125), 0.24136077 * np.log10(x * 87.09937546 + 1) + 0.092864125, ) # NOTE: *Canon Log 2* v1.2 constants are expressed in legal range # (studio swing). clog2_cv = clog2 if out_normalised_code_value else legal_to_full(clog2, bit_depth) return as_float(from_range_1(clog2_cv)) def log_decoding_CanonLog2_v1_2( clog2: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 2* v1.2 log decoding curve / electro-optical transfer function. Parameters ---------- clog2 *Canon Log 2* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log 2* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2020` Examples -------- >>> log_decoding_CanonLog2_v1_2(39.825469256149191 / 100) ... # doctest: +ELLIPSIS 0.1799999... """ clog2 = to_domain_1(clog2) # NOTE: *Canon Log 2* v1.2 constants are expressed in legal range # (studio swing). clog2 = clog2 if in_normalised_code_value else full_to_legal(clog2, bit_depth) x = np.where( clog2 < 0.092864125, -(10 ** ((0.092864125 - clog2) / 0.24136077) - 1) / 87.09937546, (10 ** ((clog2 - 0.092864125) / 0.24136077) - 1) / 87.09937546, ) if out_reflection: x = x * 0.9 return as_float(from_range_1(x)) CANON_LOG_2_ENCODING_METHODS: CanonicalMapping = CanonicalMapping( { "v1": log_encoding_CanonLog2_v1, "v1.2": log_encoding_CanonLog2_v1_2, } ) CANON_LOG_2_ENCODING_METHODS.__doc__ = """ Supported *Canon Log 2* log encoding curve / opto-electronic transfer function methods. References ---------- :cite:`Canon2016`, :cite:`Canon2020` """
[docs] def log_encoding_CanonLog2( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, method: Literal["v1", "v1.2"] | str = "v1.2", ) -> NDArrayFloat: """ Define the *Canon Log 2* log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log 2* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. method Computation method. Returns ------- :class:`numpy.ndarray` *Canon Log 2* non-linear data. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016`, :cite:`Canon2020` Examples -------- >>> log_encoding_CanonLog2(0.18) * 100 # doctest: +ELLIPSIS 39.8254692... """ method = validate_method(method, tuple(CANON_LOG_2_ENCODING_METHODS)) return CANON_LOG_2_ENCODING_METHODS[method]( x, bit_depth, out_normalised_code_value, in_reflection )
CANON_LOG_2_DECODING_METHODS: CanonicalMapping = CanonicalMapping( { "v1": log_decoding_CanonLog2_v1, "v1.2": log_decoding_CanonLog2_v1_2, } ) CANON_LOG_2_DECODING_METHODS.__doc__ = """ Supported *Canon Log 2* log decoding curve / electro-optical transfer function methods. References ---------- :cite:`Canon2016`, :cite:`Canon2020` """
[docs] def log_decoding_CanonLog2( clog2: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, method: Literal["v1", "v1.2"] | str = "v1.2", ) -> NDArrayFloat: """ Define the *Canon Log 2* log decoding curve / electro-optical transfer function. Parameters ---------- clog2 *Canon Log 2* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log 2* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. method Computation method. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016`, :cite:`Canon2020` Examples -------- >>> log_decoding_CanonLog2(39.825469256149191 / 100) # doctest: +ELLIPSIS 0.1799999... """ method = validate_method(method, tuple(CANON_LOG_2_DECODING_METHODS)) return CANON_LOG_2_DECODING_METHODS[method]( clog2, bit_depth, in_normalised_code_value, out_reflection )
def log_encoding_CanonLog3_v1( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 3* v1 log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log 3* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` *Canon Log 3* non-linear data. Notes ----- - Introspection of the grafting points by Shaw, N. (2018) shows that the *Canon Log 3* v1 IDT was likely derived from its encoding curve as the latter is grafted at *+/-0.014*:: >>> clog3 = 0.04076162 >>> (clog3 - 0.073059361) / 2.3069815 -0.014000000000000002 >>> clog3 = 0.105357102 >>> (clog3 - 0.073059361) / 2.3069815 0.013999999999999997 +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog3`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016` Examples -------- >>> log_encoding_CanonLog3_v1(0.18) * 100 # doctest: +ELLIPSIS 34.3389369... """ x = to_domain_1(x) if in_reflection: x = x / 0.9 with domain_range_scale("ignore"): clog3 = np.select( ( x < log_decoding_CanonLog3_v1(0.04076162, bit_depth, False, False), x <= log_decoding_CanonLog3_v1(0.105357102, bit_depth, False, False), x > log_decoding_CanonLog3_v1(0.105357102, bit_depth, False, False), ), ( -0.42889912 * np.log10(-x * 14.98325 + 1) + 0.07623209, 2.3069815 * x + 0.073059361, 0.42889912 * np.log10(x * 14.98325 + 1) + 0.069886632, ), ) clog3_cv = full_to_legal(clog3, bit_depth) if out_normalised_code_value else clog3 return as_float(from_range_1(clog3_cv)) def log_decoding_CanonLog3_v1( clog3: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 3* v1 log decoding curve / electro-optical transfer function. Parameters ---------- clog3 *Canon Log 3* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log 3* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog3`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016` Examples -------- >>> log_decoding_CanonLog3_v1(34.338936938868677 / 100) # doctest: +ELLIPSIS 0.1800000... """ clog3 = to_domain_1(clog3) clog3 = legal_to_full(clog3, bit_depth) if in_normalised_code_value else clog3 x = np.select( (clog3 < 0.04076162, clog3 <= 0.105357102, clog3 > 0.105357102), ( -(10 ** ((0.07623209 - clog3) / 0.42889912) - 1) / 14.98325, (clog3 - 0.073059361) / 2.3069815, (10 ** ((clog3 - 0.069886632) / 0.42889912) - 1) / 14.98325, ), ) if out_reflection: x = x * 0.9 return as_float(from_range_1(x)) def log_encoding_CanonLog3_v1_2( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 3* v1.2 log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log 3* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` *Canon Log 3* non-linear data. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog3`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2020` Examples -------- >>> log_encoding_CanonLog3_v1_2(0.18) * 100 # doctest: +ELLIPSIS 34.3389370... """ x = to_domain_1(x) if in_reflection: x = x / 0.9 with domain_range_scale("ignore"): clog3 = np.select( ( x < log_decoding_CanonLog3_v1_2(0.097465473, bit_depth, True, False), x <= log_decoding_CanonLog3_v1_2(0.15277891, bit_depth, True, False), x > log_decoding_CanonLog3_v1_2(0.15277891, bit_depth, True, False), ), ( -0.36726845 * np.log10(-x * 14.98325 + 1) + 0.12783901, 1.9754798 * x + 0.12512219, 0.36726845 * np.log10(x * 14.98325 + 1) + 0.12240537, ), ) # NOTE: *Canon Log 3* v1.2 constants are expressed in legal range # (studio swing). clog3_cv = clog3 if out_normalised_code_value else legal_to_full(clog3, bit_depth) return as_float(from_range_1(clog3_cv)) def log_decoding_CanonLog3_v1_2( clog3: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, ) -> NDArrayFloat: """ Define the *Canon Log 3* v1.2 log decoding curve / electro-optical transfer function. Parameters ---------- clog3 *Canon Log 3* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log 3* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog3`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2020` Examples -------- >>> log_decoding_CanonLog3_v1_2(34.338937037393549 / 100) ... # doctest: +ELLIPSIS 0.1799999... """ clog3 = to_domain_1(clog3) # NOTE: *Canon Log 3* v1.2 constants are expressed in legal range # (studio swing). clog3 = clog3 if in_normalised_code_value else full_to_legal(clog3, bit_depth) x = np.select( (clog3 < 0.097465473, clog3 <= 0.15277891, clog3 > 0.15277891), ( -(10 ** ((0.12783901 - clog3) / 0.36726845) - 1) / 14.98325, (clog3 - 0.12512219) / 1.9754798, (10 ** ((clog3 - 0.12240537) / 0.36726845) - 1) / 14.98325, ), ) if out_reflection: x = x * 0.9 return as_float(from_range_1(x)) CANON_LOG_3_ENCODING_METHODS: CanonicalMapping = CanonicalMapping( { "v1": log_encoding_CanonLog3_v1, "v1.2": log_encoding_CanonLog3_v1_2, } ) CANON_LOG_3_ENCODING_METHODS.__doc__ = """ Supported *Canon Log 3* log encoding curve / opto-electronic transfer function methods. References ---------- :cite:`Canon2016`, :cite:`Canon2020` """
[docs] def log_encoding_CanonLog3( x: ArrayLike, bit_depth: int = 10, out_normalised_code_value: bool = True, in_reflection: bool = True, method: Literal["v1", "v1.2"] | str = "v1.2", ) -> NDArrayFloat: """ Define the *Canon Log 3* log encoding curve / opto-electronic transfer function. Parameters ---------- x Linear data :math:`x`. bit_depth Bit-depth used for conversion. out_normalised_code_value Whether the *Canon Log 3* non-linear data is encoded as normalised code values. in_reflection Whether the light level :math:`x` to a camera is reflection. method Computation method. Returns ------- :class:`numpy.ndarray` *Canon Log 3* non-linear data. Notes ----- - Introspection of the grafting points by Shaw, N. (2018) shows that the *Canon Log 3* v1 IDT was likely derived from its encoding curve as the latter is grafted at *+/-0.014*:: >>> clog3 = 0.04076162 >>> (clog3 - 0.073059361) / 2.3069815 -0.014000000000000002 >>> clog3 = 0.105357102 >>> (clog3 - 0.073059361) / 2.3069815 0.013999999999999997 +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016`, :cite:`Canon2020` Examples -------- >>> log_encoding_CanonLog3(0.18) * 100 # doctest: +ELLIPSIS 34.3389370... """ method = validate_method(method, tuple(CANON_LOG_3_ENCODING_METHODS)) return CANON_LOG_3_ENCODING_METHODS[method]( x, bit_depth, out_normalised_code_value, in_reflection )
CANON_LOG_3_DECODING_METHODS: CanonicalMapping = CanonicalMapping( { "v1": log_decoding_CanonLog3_v1, "v1.2": log_decoding_CanonLog3_v1_2, } ) CANON_LOG_3_DECODING_METHODS.__doc__ = """ Supported *Canon Log 3* log decoding curve / electro-optical transfer function methods. References ---------- :cite:`Canon2016`, :cite:`Canon2020` """
[docs] def log_decoding_CanonLog3( clog3: ArrayLike, bit_depth: int = 10, in_normalised_code_value: bool = True, out_reflection: bool = True, method: Literal["v1", "v1.2"] | str = "v1.2", ) -> NDArrayFloat: """ Define the *Canon Log 3* log decoding curve / electro-optical transfer function. Parameters ---------- clog3 *Canon Log 3* non-linear data. bit_depth Bit-depth used for conversion. in_normalised_code_value Whether the *Canon Log 3* non-linear data is encoded with normalised code values. out_reflection Whether the light level :math:`x` to a camera is reflection. method Computation method. Returns ------- :class:`numpy.ndarray` Linear data :math:`x`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``clog2`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``x`` | [0, 1] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Canon2016`, :cite:`Canon2020` Examples -------- >>> log_decoding_CanonLog3(34.338937037393549 / 100) # doctest: +ELLIPSIS 0.1799999... """ method = validate_method(method, tuple(CANON_LOG_3_DECODING_METHODS)) return CANON_LOG_3_DECODING_METHODS[method]( clog3, bit_depth, in_normalised_code_value, out_reflection )