Source code for colour.appearance.nayatani95

"""
Nayatani (1995) Colour Appearance Model
=======================================

Define the *Nayatani (1995)* colour appearance model objects:

-   :class:`colour.CAM_Specification_Nayatani95`
-   :func:`colour.XYZ_to_Nayatani95`

References
----------
-   :cite:`Fairchild2013ba` : Fairchild, M. D. (2013). The Nayatani et al.
    Model. In Color Appearance Models (3rd ed., pp. 4810-5085). Wiley.
    ISBN:B00DAYO8E2
-   :cite:`Nayatani1995a` : Nayatani, Y., Sobagaki, H., & Yano, K. H. T.
    (1995). Lightness dependency of chroma scales of a nonlinear
    color-appearance model and its latest formulation. Color Research &
    Application, 20(3), 156-167. doi:10.1002/col.5080200305
"""

from __future__ import annotations

from dataclasses import dataclass, field

import numpy as np

from colour.adaptation.cie1994 import (
    MATRIX_XYZ_TO_RGB_CIE1994,
    beta_1,
    exponential_factors,
    intermediate_values,
)
from colour.algebra import spow, vecmul
from colour.hints import ArrayLike, NDArrayFloat, cast
from colour.models import XYZ_to_xy
from colour.utilities import (
    MixinDataclassArithmetic,
    as_float,
    as_float_array,
    from_range_degrees,
    to_domain_100,
    tsplit,
    tstack,
)

__author__ = "Colour Developers"
__copyright__ = "Copyright 2013 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "MATRIX_XYZ_TO_RGB_NAYATANI95",
    "CAM_ReferenceSpecification_Nayatani95",
    "CAM_Specification_Nayatani95",
    "XYZ_to_Nayatani95",
    "illuminance_to_luminance",
    "XYZ_to_RGB_Nayatani95",
    "scaling_coefficient",
    "achromatic_response",
    "tritanopic_response",
    "protanopic_response",
    "brightness_correlate",
    "ideal_white_brightness_correlate",
    "achromatic_lightness_correlate",
    "normalised_achromatic_lightness_correlate",
    "hue_angle",
    "saturation_components",
    "saturation_correlate",
    "chroma_components",
    "chroma_correlate",
    "colourfulness_components",
    "colourfulness_correlate",
    "chromatic_strength_function",
]

MATRIX_XYZ_TO_RGB_NAYATANI95: NDArrayFloat = MATRIX_XYZ_TO_RGB_CIE1994
"""
*Nayatani (1995)* colour appearance model *CIE XYZ* tristimulus values to cone
responses matrix.
"""


@dataclass
class CAM_ReferenceSpecification_Nayatani95(MixinDataclassArithmetic):
    """
    Define the *Nayatani (1995)* colour appearance model reference
    specification.

    This specification has field names consistent with *Fairchild (2013)*
    reference.

    Parameters
    ----------
    L_star_P
        Correlate of *achromatic Lightness* :math:`L_p^\\star`.
    C
        Correlate of *chroma* :math:`C`.
    theta
        *Hue* angle :math:`\\theta` in degrees.
    S
        Correlate of *saturation* :math:`S`.
    B_r
        Correlate of *brightness* :math:`B_r`.
    M
        Correlate of *colourfulness* :math:`M`.
    H
        *Hue* :math:`h` quadrature :math:`H`.
    H_C
        *Hue* :math:`h` composition :math:`H_C`.
    L_star_N
        Correlate of *normalised achromatic Lightness* :math:`L_n^\\star`.

    References
    ----------
    :cite:`Fairchild2013ba`, :cite:`Nayatani1995a`
    """

    L_star_P: float | NDArrayFloat | None = field(default_factory=lambda: None)
    C: float | NDArrayFloat | None = field(default_factory=lambda: None)
    theta: float | NDArrayFloat | None = field(default_factory=lambda: None)
    S: float | NDArrayFloat | None = field(default_factory=lambda: None)
    B_r: float | NDArrayFloat | None = field(default_factory=lambda: None)
    M: float | NDArrayFloat | None = field(default_factory=lambda: None)
    H: float | NDArrayFloat | None = field(default_factory=lambda: None)
    H_C: float | NDArrayFloat | None = field(default_factory=lambda: None)
    L_star_N: float | NDArrayFloat | None = field(default_factory=lambda: None)


[docs] @dataclass class CAM_Specification_Nayatani95(MixinDataclassArithmetic): """ Define the *Nayatani (1995)* colour appearance model specification. This specification has field names consistent with the remaining colour appearance models in :mod:`colour.appearance` but diverge from *Fairchild (2013)* reference. Parameters ---------- L_star_P Correlate of *achromatic Lightness* :math:`L_p^\\star`. C Correlate of *chroma* :math:`C`. h *Hue* angle :math:`\\theta` in degrees. s Correlate of *saturation* :math:`S`. Q Correlate of *brightness* :math:`B_r`. M Correlate of *colourfulness* :math:`M`. H *Hue* :math:`h` quadrature :math:`H`. HC *Hue* :math:`h` composition :math:`H_C`. L_star_N Correlate of *normalised achromatic Lightness* :math:`L_n^\\star`. Notes ----- - This specification is the one used in the current model implementation. References ---------- :cite:`Fairchild2013ba`, :cite:`Nayatani1995a` """ L_star_P: float | NDArrayFloat | None = field(default_factory=lambda: None) C: float | NDArrayFloat | None = field(default_factory=lambda: None) h: float | NDArrayFloat | None = field(default_factory=lambda: None) s: float | NDArrayFloat | None = field(default_factory=lambda: None) Q: float | NDArrayFloat | None = field(default_factory=lambda: None) M: float | NDArrayFloat | None = field(default_factory=lambda: None) H: float | NDArrayFloat | None = field(default_factory=lambda: None) HC: float | NDArrayFloat | None = field(default_factory=lambda: None) L_star_N: float | NDArrayFloat | None = field(default_factory=lambda: None)
[docs] def XYZ_to_Nayatani95( XYZ: ArrayLike, XYZ_n: ArrayLike, Y_o: ArrayLike, E_o: ArrayLike, E_or: ArrayLike, n: ArrayLike = 1, ) -> CAM_Specification_Nayatani95: """ Compute the *Nayatani (1995)* colour appearance model correlates. Parameters ---------- XYZ *CIE XYZ* tristimulus values of test sample / stimulus. XYZ_n *CIE XYZ* tristimulus values of reference white. Y_o Luminance factor :math:`Y_o` of achromatic background as percentage normalised to domain [0.18, 1.0] in **'Reference'** domain-range scale. E_o Illuminance :math:`E_o` of the viewing field in lux. E_or Normalising illuminance :math:`E_{or}` in lux usually normalised to domain [1000, 3000]. n Noise term used in the non-linear chromatic adaptation model. Returns ------- :class:`colour.CAM_Specification_Nayatani95` *Nayatani (1995)* colour appearance model specification. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``XYZ`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ | ``XYZ_n`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------------------------------+-----------------------\ +---------------+ | **Range** | **Scale - Reference** \ | **Scale - 1** | +====================================+=======================\ +===============+ | ``CAM_Specification_Nayatani95.h`` | [0, 360] \ | [0, 1] | +------------------------------------+-----------------------\ +---------------+ References ---------- :cite:`Fairchild2013ba`, :cite:`Nayatani1995a` Examples -------- >>> XYZ = np.array([19.01, 20.00, 21.78]) >>> XYZ_n = np.array([95.05, 100.00, 108.88]) >>> Y_o = 20.0 >>> E_o = 5000.0 >>> E_or = 1000.0 >>> XYZ_to_Nayatani95(XYZ, XYZ_n, Y_o, E_o, E_or) # doctest: +ELLIPSIS CAM_Specification_Nayatani95(L_star_P=49.9998829..., C=0.0133550..., \ h=257.5232268..., s=0.0133550..., Q=62.6266734..., M=0.0167262..., \ H=None, HC=None, L_star_N=50.0039154...) """ XYZ = to_domain_100(XYZ) XYZ_n = to_domain_100(XYZ_n) Y_o = as_float_array(Y_o) E_o = as_float_array(E_o) E_or = as_float_array(E_or) # Computing adapting luminance :math:`L_o` and normalising luminance # :math:`L_{or}` in in :math:`cd/m^2`. # L_o = illuminance_to_luminance(E_o, Y_o) L_or = illuminance_to_luminance(E_or, Y_o) # Computing :math:`\\xi` :math:`\\eta`, :math:`\\zeta` values. xez = intermediate_values(XYZ_to_xy(XYZ_n / 100)) xi, eta, _zeta = tsplit(xez) # Computing adapting field cone responses. RGB_o = ((Y_o[..., None] * E_o[..., None]) / (100 * np.pi)) * xez # Computing stimulus cone responses. RGB = XYZ_to_RGB_Nayatani95(XYZ) R, G, _B = tsplit(RGB) # Computing exponential factors of the chromatic adaptation. bRGB_o = exponential_factors(RGB_o) bL_or = beta_1(L_or) # Computing scaling coefficients :math:`e(R)` and :math:`e(G)` eR = scaling_coefficient(R, xi) eG = scaling_coefficient(G, eta) # Computing opponent colour dimensions. # Computing achromatic response :math:`Q`: Q_response = achromatic_response(RGB, bRGB_o, xez, bL_or, eR, eG, n) # Computing tritanopic response :math:`t`: t_response = tritanopic_response(RGB, bRGB_o, xez, n) # Computing protanopic response :math:`p`: p_response = protanopic_response(RGB, bRGB_o, xez, n) # Computing the correlate of *brightness* :math:`B_r`. B_r = brightness_correlate(bRGB_o, bL_or, Q_response) # Computing *brightness* :math:`B_{rw}` of ideal white. brightness_ideal_white = ideal_white_brightness_correlate(bRGB_o, xez, bL_or, n) # Computing the correlate of achromatic *Lightness* :math:`L_p^\\star`. L_star_P = achromatic_lightness_correlate(Q_response) # Computing the correlate of normalised achromatic *Lightness* # :math:`L_n^\\star`. L_star_N = normalised_achromatic_lightness_correlate(B_r, brightness_ideal_white) # Computing the *hue* angle :math:`\\theta`. theta = hue_angle(p_response, t_response) # TODO: Implement hue quadrature & composition computation. # Computing the correlate of *saturation* :math:`S`. S_RG, S_YB = tsplit(saturation_components(theta, bL_or, t_response, p_response)) S = saturation_correlate(S_RG, S_YB) # Computing the correlate of *chroma* :math:`C`. # C_RG, C_YB = tsplit(chroma_components(L_star_P, S_RG, S_YB)) C = chroma_correlate(L_star_P, S) # Computing the correlate of *colourfulness* :math:`M`. # TODO: Investigate components usage. # M_RG, M_YB = tsplit(colourfulness_components(C_RG, C_YB, # brightness_ideal_white)) M = colourfulness_correlate(C, brightness_ideal_white) return CAM_Specification_Nayatani95( L_star_P, C, as_float(from_range_degrees(theta)), S, B_r, M, None, None, L_star_N, )
def illuminance_to_luminance(E: ArrayLike, Y_f: ArrayLike) -> NDArrayFloat: """ Convert given *illuminance* :math:`E` value in lux to *luminance* in :math:`cd/m^2`. Parameters ---------- E *Illuminance* :math:`E` in lux. Y_f *Luminance* factor :math:`Y_f` in :math:`cd/m^2`. Returns ------- :class:`numpy.ndarray` *Luminance* :math:`Y` in :math:`cd/m^2`. Examples -------- >>> illuminance_to_luminance(5000.0, 20.0) # doctest: +ELLIPSIS 318.3098861... """ E = as_float_array(E) Y_f = as_float_array(Y_f) return Y_f * E / (100 * np.pi) def XYZ_to_RGB_Nayatani95(XYZ: ArrayLike) -> NDArrayFloat: """ Convert from *CIE XYZ* tristimulus values to cone responses. Parameters ---------- XYZ *CIE XYZ* tristimulus values. Returns ------- :class:`numpy.ndarray` Cone responses. Examples -------- >>> XYZ = np.array([19.01, 20.00, 21.78]) >>> XYZ_to_RGB_Nayatani95(XYZ) # doctest: +ELLIPSIS array([ 20.0005206..., 19.999783 ..., 19.9988316...]) """ return vecmul(MATRIX_XYZ_TO_RGB_NAYATANI95, XYZ) def scaling_coefficient(x: ArrayLike, y: ArrayLike) -> NDArrayFloat: """ Return the scaling coefficient :math:`e(R)` or :math:`e(G)`. Parameters ---------- x Cone response. y Intermediate value. Returns ------- :class:`numpy.ndarray` Scaling coefficient :math:`e(R)` or :math:`e(G)`. Examples -------- >>> x = 20.000520600000002 >>> y = 1.000042192 >>> scaling_coefficient(x, y) 1.0 """ x = as_float_array(x) y = as_float_array(y) return as_float(np.where(x >= (20 * y), 1.758, 1)) def achromatic_response( RGB: ArrayLike, bRGB_o: ArrayLike, xez: ArrayLike, bL_or: ArrayLike, eR: ArrayLike, eG: ArrayLike, n: ArrayLike = 1, ) -> NDArrayFloat: """ Return the achromatic response :math:`Q` from given stimulus cone responses. Parameters ---------- RGB Stimulus cone responses. bRGB_o Chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)`. xez Intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. bL_or Normalising chromatic adaptation exponential factor :math:`\\beta_1(B_or)`. eR Scaling coefficient :math:`e(R)`. eG Scaling coefficient :math:`e(G)`. n Noise term used in the non-linear chromatic adaptation model. Returns ------- :class:`numpy.ndarray` Achromatic response :math:`Q`. Examples -------- >>> RGB = np.array([20.00052060, 19.99978300, 19.99883160]) >>> bRGB_o = np.array([4.61062223, 4.61058926, 4.65206986]) >>> xez = np.array([1.00004219, 0.99998001, 0.99975794]) >>> bL_or = 3.681021495604089 >>> eR = 1.0 >>> eG = 1.758 >>> n = 1.0 >>> achromatic_response(RGB, bRGB_o, xez, bL_or, eR, eG, n) ... # doctest: +ELLIPSIS -0.0001169... """ R, G, _B = tsplit(RGB) bR_o, bG_o, _bB_o = tsplit(bRGB_o) xi, eta, _zeta = tsplit(xez) bL_or = as_float_array(bL_or) eR = as_float_array(eR) eG = as_float_array(eG) Q = (2 / 3) * bR_o * eR * np.log10((R + n) / (20 * xi + n)) Q += (1 / 3) * bG_o * eG * np.log10((G + n) / (20 * eta + n)) Q *= 41.69 / bL_or return as_float(Q) def tritanopic_response( RGB: ArrayLike, bRGB_o: ArrayLike, xez: ArrayLike, n: ArrayLike ) -> NDArrayFloat: """ Return the tritanopic response :math:`t` from given stimulus cone responses. Parameters ---------- RGB Stimulus cone responses. bRGB_o Chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)`. xez Intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. n Noise term used in the non-linear chromatic adaptation model. Returns ------- :class:`numpy.ndarray` Tritanopic response :math:`t`. Examples -------- >>> RGB = np.array([20.00052060, 19.99978300, 19.99883160]) >>> bRGB_o = np.array([4.61062223, 4.61058926, 4.65206986]) >>> xez = np.array([1.00004219, 0.99998001, 0.99975794]) >>> n = 1.0 >>> tritanopic_response(RGB, bRGB_o, xez, n) # doctest: +ELLIPSIS -1.7703650...e-05 """ R, G, B = tsplit(RGB) bR_o, bG_o, bB_o = tsplit(bRGB_o) xi, eta, zeta = tsplit(xez) t = bR_o * np.log10((R + n) / (20 * xi + n)) t += -(12 / 11) * bG_o * np.log10((G + n) / (20 * eta + n)) t += (1 / 11) * bB_o * np.log10((B + n) / (20 * zeta + n)) return as_float(t) def protanopic_response( RGB: ArrayLike, bRGB_o: ArrayLike, xez: ArrayLike, n: ArrayLike ) -> NDArrayFloat: """ Return the protanopic response :math:`p` from given stimulus cone responses. Parameters ---------- RGB Stimulus cone responses. bRGB_o Chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)`. xez Intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. n Noise term used in the non-linear chromatic adaptation model. Returns ------- :class:`numpy.ndarray` Protanopic response :math:`p`. Examples -------- >>> RGB = np.array([20.00052060, 19.99978300, 19.99883160]) >>> bRGB_o = np.array([4.61062223, 4.61058926, 4.65206986]) >>> xez = np.array([1.00004219, 0.99998001, 0.99975794]) >>> n = 1.0 >>> protanopic_response(RGB, bRGB_o, xez, n) # doctest: +ELLIPSIS -8.0021426...e-05 """ R, G, B = tsplit(RGB) bR_o, bG_o, bB_o = tsplit(bRGB_o) xi, eta, zeta = tsplit(xez) p = (1 / 9) * bR_o * np.log10((R + n) / (20 * xi + n)) p += (1 / 9) * bG_o * np.log10((G + n) / (20 * eta + n)) p += -(2 / 9) * bB_o * np.log10((B + n) / (20 * zeta + n)) return as_float(p) def brightness_correlate( bRGB_o: ArrayLike, bL_or: ArrayLike, Q: ArrayLike ) -> NDArrayFloat: """ Return the *brightness* correlate :math:`B_r`. Parameters ---------- bRGB_o Chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)`. bL_or Normalising chromatic adaptation exponential factor :math:`\\beta_1(B_or)`. Q Achromatic response :math:`Q`. Returns ------- :class:`numpy.ndarray` *Brightness* correlate :math:`B_r`. Examples -------- >>> bRGB_o = np.array([4.61062223, 4.61058926, 4.65206986]) >>> bL_or = 3.681021495604089 >>> Q = -0.000117024294955 >>> brightness_correlate(bRGB_o, bL_or, Q) # doctest: +ELLIPSIS 62.6266734... """ bR_o, bG_o, _bB_o = tsplit(bRGB_o) bL_or = as_float_array(bL_or) Q = as_float_array(Q) B_r = (50 / bL_or) * ((2 / 3) * bR_o + (1 / 3) * bG_o) + Q return as_float(B_r) def ideal_white_brightness_correlate( bRGB_o: ArrayLike, xez: ArrayLike, bL_or: ArrayLike, n: ArrayLike, ) -> NDArrayFloat: """ Return the ideal white *brightness* correlate :math:`B_{rw}`. Parameters ---------- bRGB_o Chromatic adaptation exponential factors :math:`\\beta_1(R_o)`, :math:`\\beta_1(G_o)` and :math:`\\beta_2(B_o)`. xez Intermediate values :math:`\\xi`, :math:`\\eta`, :math:`\\zeta`. bL_or Normalising chromatic adaptation exponential factor :math:`\\beta_1(B_or)`. n Noise term used in the non-linear chromatic adaptation model. Returns ------- :class:`numpy.ndarray` Ideal white *brightness* correlate :math:`B_{rw}`. Examples -------- >>> bRGB_o = np.array([4.61062223, 4.61058926, 4.65206986]) >>> xez = np.array([1.00004219, 0.99998001, 0.99975794]) >>> bL_or = 3.681021495604089 >>> n = 1.0 >>> ideal_white_brightness_correlate(bRGB_o, xez, bL_or, n) ... # doctest: +ELLIPSIS 125.2435392... """ bR_o, bG_o, _bB_o = tsplit(bRGB_o) xi, eta, _zeta = tsplit(xez) bL_or = as_float_array(bL_or) B_rw = (2 / 3) * bR_o * 1.758 * np.log10((100 * xi + n) / (20 * xi + n)) B_rw += (1 / 3) * bG_o * 1.758 * np.log10((100 * eta + n) / (20 * eta + n)) B_rw *= 41.69 / bL_or B_rw += (50 / bL_or) * (2 / 3) * bR_o B_rw += (50 / bL_or) * (1 / 3) * bG_o return as_float(B_rw) def achromatic_lightness_correlate( Q: ArrayLike, ) -> NDArrayFloat: """ Return the *achromatic Lightness* correlate :math:`L_p^\\star`. Parameters ---------- Q Achromatic response :math:`Q`. Returns ------- :class:`numpy.ndarray` *Achromatic Lightness* correlate :math:`L_p^\\star`. Examples -------- >>> Q = -0.000117024294955 >>> achromatic_lightness_correlate(Q) # doctest: +ELLIPSIS 49.9998829... """ Q = as_float_array(Q) return as_float(Q + 50) def normalised_achromatic_lightness_correlate( B_r: ArrayLike, B_rw: ArrayLike ) -> NDArrayFloat: """ Return the *normalised achromatic Lightness* correlate :math:`L_n^\\star`. Parameters ---------- B_r *Brightness* correlate :math:`B_r`. B_rw Ideal white *brightness* correlate :math:`B_{rw}`. Returns ------- :class:`numpy.ndarray` *Normalised achromatic Lightness* correlate :math:`L_n^\\star`. Examples -------- >>> B_r = 62.626673467230766 >>> B_rw = 125.24353925846037 >>> normalised_achromatic_lightness_correlate(B_r, B_rw) ... # doctest: +ELLIPSIS 50.0039154... """ B_r = as_float_array(B_r) B_rw = as_float_array(B_rw) return as_float(100 * B_r / B_rw) def hue_angle(p: ArrayLike, t: ArrayLike) -> NDArrayFloat: """ Return the *hue* angle :math:`h` in degrees. Parameters ---------- p Protanopic response :math:`p`. t Tritanopic response :math:`t`. Returns ------- :class:`numpy.ndarray` *Hue* angle :math:`h` in degrees. Examples -------- >>> p = -8.002142682085493e-05 >>> t = -0.000017703650669 >>> hue_angle(p, t) # doctest: +ELLIPSIS 257.5250300... """ p = as_float_array(p) t = as_float_array(t) h_L = np.degrees(np.arctan2(p, t)) % 360 return as_float(h_L) def chromatic_strength_function( theta: ArrayLike, ) -> NDArrayFloat: """ Define the chromatic strength function :math:`E_s(\\theta)` used to correct saturation scale as function of hue angle :math:`\\theta` in degrees. Parameters ---------- theta Hue angle :math:`\\theta` in degrees. Returns ------- :class:`numpy.ndarray` Corrected saturation scale. Examples -------- >>> h = 257.52322689806243 >>> chromatic_strength_function(h) # doctest: +ELLIPSIS 1.2267869... """ theta = np.radians(theta) E_s = cast(NDArrayFloat, 0.9394) E_s += -0.2478 * np.sin(1 * theta) E_s += -0.0743 * np.sin(2 * theta) E_s += +0.0666 * np.sin(3 * theta) E_s += -0.0186 * np.sin(4 * theta) E_s += -0.0055 * np.cos(1 * theta) E_s += -0.0521 * np.cos(2 * theta) E_s += -0.0573 * np.cos(3 * theta) E_s += -0.0061 * np.cos(4 * theta) return as_float(E_s) def saturation_components( h: ArrayLike, bL_or: ArrayLike, t: ArrayLike, p: ArrayLike, ) -> NDArrayFloat: """ Return the *saturation* components :math:`S_{RG}` and :math:`S_{YB}`. Parameters ---------- h Correlate of *hue* :math:`h` in degrees. bL_or Normalising chromatic adaptation exponential factor :math:`\\beta_1(B_or)`. t Tritanopic response :math:`t`. p Protanopic response :math:`p`. Returns ------- :class:`numpy.ndarray` *Saturation* components :math:`S_{RG}` and :math:`S_{YB}`. Examples -------- >>> h = 257.52322689806243 >>> bL_or = 3.681021495604089 >>> t = -0.000017706764677 >>> p = -0.000080023561356 >>> saturation_components(h, bL_or, t, p) # doctest: +ELLIPSIS array([-0.0028852..., -0.0130396...]) """ h = as_float_array(h) bL_or = as_float_array(bL_or) t = as_float_array(t) p = as_float_array(p) E_s = chromatic_strength_function(h) S_RG = 488.93 / bL_or * E_s * t S_YB = 488.93 / bL_or * E_s * p return tstack([S_RG, S_YB]) def saturation_correlate(S_RG: ArrayLike, S_YB: ArrayLike) -> NDArrayFloat: """ Return the correlate of *saturation* :math:`S`. Parameters ---------- S_RG *Saturation* component :math:`S_{RG}`. S_YB *Saturation* component :math:`S_{YB}`. Returns ------- :class:`numpy.ndarray` Correlate of *saturation* :math:`S`. Examples -------- >>> S_RG = -0.002885271638197 >>> S_YB = -0.013039632941332 >>> saturation_correlate(S_RG, S_YB) # doctest: +ELLIPSIS 0.0133550... """ S_RG = as_float_array(S_RG) S_YB = as_float_array(S_YB) S = np.hypot(S_RG, S_YB) return as_float(S) def chroma_components( L_star_P: ArrayLike, S_RG: ArrayLike, S_YB: ArrayLike, ) -> NDArrayFloat: """ Return the *chroma* components :math:`C_{RG}` and :math:`C_{YB}`. Parameters ---------- L_star_P *Achromatic Lightness* correlate :math:`L_p^\\star`. S_RG *Saturation* component :math:`S_{RG}`. S_YB *Saturation* component :math:`S_{YB}`. Returns ------- :class:`numpy.ndarray` *Chroma* components :math:`C_{RG}` and :math:`C_{YB}`. Examples -------- >>> L_star_P = 49.99988297570504 >>> S_RG = -0.002885271638197 >>> S_YB = -0.013039632941332 >>> chroma_components(L_star_P, S_RG, S_YB) # doctest: +ELLIPSIS array([-0.00288527, -0.01303961]) """ L_star_P = as_float_array(L_star_P) S_RG = as_float_array(S_RG) S_YB = as_float_array(S_YB) C_RG = spow(L_star_P / 50, 0.7) * S_RG C_YB = spow(L_star_P / 50, 0.7) * S_YB return tstack([C_RG, C_YB]) def chroma_correlate(L_star_P: ArrayLike, S: ArrayLike) -> NDArrayFloat: """ Return the correlate of *chroma* :math:`C`. Parameters ---------- L_star_P *Achromatic Lightness* correlate :math:`L_p^\\star`. S Correlate of *saturation* :math:`S`. Returns ------- :class:`numpy.ndarray` Correlate of *chroma* :math:`C`. Examples -------- >>> L_star_P = 49.99988297570504 >>> S = 0.013355029751778 >>> chroma_correlate(L_star_P, S) # doctest: +ELLIPSIS 0.0133550... """ L_star_P = as_float_array(L_star_P) S = as_float_array(S) C = spow(L_star_P / 50, 0.7) * S return C def colourfulness_components( C_RG: ArrayLike, C_YB: ArrayLike, B_rw: ArrayLike, ) -> NDArrayFloat: """ Return the *colourfulness* components :math:`M_{RG}` and :math:`M_{YB}`. Parameters ---------- C_RG *Chroma* component :math:`C_{RG}`. C_YB *Chroma* component :math:`C_{YB}`. B_rw Ideal white *brightness* correlate :math:`B_{rw}`. Returns ------- :class:`numpy.ndarray` *Colourfulness* components :math:`M_{RG}` and :math:`M_{YB}`. Examples -------- >>> C_RG = -0.002885271638197 >>> C_YB = -0.013039632941332 >>> B_rw = 125.24353925846037 >>> colourfulness_components(C_RG, C_YB, B_rw) # doctest: +ELLIPSIS array([-0.0036136..., -0.0163313...]) """ C_RG = as_float_array(C_RG) C_YB = as_float_array(C_YB) B_rw = as_float_array(B_rw) M_RG = C_RG * B_rw / 100 M_YB = C_YB * B_rw / 100 return tstack([M_RG, M_YB]) def colourfulness_correlate(C: ArrayLike, B_rw: ArrayLike) -> NDArrayFloat: """ Return the correlate of *colourfulness* :math:`M`. Parameters ---------- C Correlate of *chroma* :math:`C`. B_rw Ideal white *brightness* correlate :math:`B_{rw}`. Returns ------- :class:`numpy.ndarray` Correlate of *colourfulness* :math:`M`. Examples -------- >>> C = 0.013355007871689 >>> B_rw = 125.24353925846037 >>> colourfulness_correlate(C, B_rw) # doctest: +ELLIPSIS 0.0167262... """ C = as_float_array(C) B_rw = as_float_array(B_rw) M = C * B_rw / 100 return as_float(M)