Source code for colour.adaptation.vonkries

# -*- coding: utf-8 -*-
"""
Von Kries Chromatic Adaptation Model
====================================

Defines *Von Kries* chromatic adaptation model objects:

-   :func:`colour.adaptation.chromatic_adaptation_matrix_VonKries`
-   :func:`colour.adaptation.chromatic_adaptation_VonKries`

See Also
--------
`Chromatic Adaptation Jupyter Notebook
<http://nbviewer.jupyter.org/github/colour-science/colour-notebooks/\
blob/master/notebooks/adaptation/vonkries.ipynb>`_

References
----------
-   :cite:`Fairchild2013t` : Fairchild, M. D. (2013). Chromatic Adaptation
    Models. In Color Appearance Models (3rd ed., pp. 4179-4252). Wiley.
    ISBN:B00DAYO8E2
"""

from __future__ import division, unicode_literals

import numpy as np

from colour.adaptation import CHROMATIC_ADAPTATION_TRANSFORMS
from colour.utilities import dot_matrix, dot_vector, row_as_diagonal

__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013-2018 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'

__all__ = [
    'chromatic_adaptation_matrix_VonKries', 'chromatic_adaptation_VonKries'
]


[docs]def chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr, transform='CAT02'): """ Computes the *chromatic adaptation* matrix from test viewing conditions to reference viewing conditions. Parameters ---------- XYZ_w : array_like Test viewing condition *CIE XYZ* tristimulus values of whitepoint. XYZ_wr : array_like Reference viewing condition *CIE XYZ* tristimulus values of whitepoint. transform : unicode, optional **{'CAT02', 'XYZ Scaling', 'Von Kries', 'Bradford', 'Sharp', 'Fairchild', 'CMCCAT97', 'CMCCAT2000', 'CAT02_BRILL_CAT', 'Bianco', 'Bianco PC'}**, Chromatic adaptation transform. Returns ------- ndarray Chromatic adaptation matrix. Raises ------ KeyError If chromatic adaptation method is not defined. References ---------- - :cite:`Fairchild2013t` Examples -------- >>> XYZ_w = np.array([1.09846607, 1.00000000, 0.35582280]) >>> XYZ_wr = np.array([0.95042855, 1.00000000, 1.08890037]) >>> chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr) ... # doctest: +ELLIPSIS array([[ 0.8687653..., -0.1416539..., 0.3871961...], [-0.1030072..., 1.0584014..., 0.1538646...], [ 0.0078167..., 0.0267875..., 2.9608177...]]) Using Bradford method: >>> XYZ_w = np.array([1.09846607, 1.00000000, 0.35582280]) >>> XYZ_wr = np.array([0.95042855, 1.00000000, 1.08890037]) >>> method = 'Bradford' >>> chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr, method) ... # doctest: +ELLIPSIS array([[ 0.8446794..., -0.1179355..., 0.3948940...], [-0.1366408..., 1.1041236..., 0.1291981...], [ 0.0798671..., -0.1349315..., 3.1928829...]]) """ M = CHROMATIC_ADAPTATION_TRANSFORMS.get(transform) if M is None: raise KeyError( '"{0}" chromatic adaptation transform is not defined! Supported ' 'methods: "{1}".'.format(transform, CHROMATIC_ADAPTATION_TRANSFORMS.keys())) rgb_w = np.einsum('...i,...ij->...j', XYZ_w, np.transpose(M)) rgb_wr = np.einsum('...i,...ij->...j', XYZ_wr, np.transpose(M)) D = rgb_wr / rgb_w D = row_as_diagonal(D) cat = dot_matrix(np.linalg.inv(M), D) cat = dot_matrix(cat, M) return cat
[docs]def chromatic_adaptation_VonKries(XYZ, XYZ_w, XYZ_wr, transform='CAT02'): """ Adapts given stimulus from test viewing conditions to reference viewing conditions. Parameters ---------- XYZ : array_like *CIE XYZ* tristimulus values of stimulus to adapt. XYZ_w : array_like Test viewing condition *CIE XYZ* tristimulus values of whitepoint. XYZ_wr : array_like Reference viewing condition *CIE XYZ* tristimulus values of whitepoint. transform : unicode, optional **{'CAT02', 'XYZ Scaling', 'Von Kries', 'Bradford', 'Sharp', 'Fairchild', 'CMCCAT97', 'CMCCAT2000', 'CAT02_BRILL_CAT', 'Bianco', 'Bianco PC'}**, Chromatic adaptation transform. Returns ------- ndarray *CIE XYZ_c* tristimulus values of the stimulus corresponding colour. References ---------- - :cite:`Fairchild2013t` Examples -------- >>> XYZ = np.array([0.07049534, 0.10080000, 0.09558313]) >>> XYZ_w = np.array([1.09846607, 1.00000000, 0.35582280]) >>> XYZ_wr = np.array([0.95042855, 1.00000000, 1.08890037]) >>> chromatic_adaptation_VonKries(XYZ, XYZ_w, XYZ_wr) # doctest: +ELLIPSIS array([ 0.0839746..., 0.1141321..., 0.2862554...]) Using Bradford method: >>> XYZ = np.array([0.07049534, 0.10080000, 0.09558313]) >>> XYZ_w = np.array([1.09846607, 1.00000000, 0.35582280]) >>> XYZ_wr = np.array([0.95042855, 1.00000000, 1.08890037]) >>> transform = 'Bradford' >>> chromatic_adaptation_VonKries(XYZ, XYZ_w, XYZ_wr, transform) ... # doctest: +ELLIPSIS array([ 0.0854032..., 0.1140122..., 0.2972149...]) """ cat = chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr, transform) XYZ_a = dot_vector(cat, XYZ) return XYZ_a