Source code for colour.models.rgb.transfer_functions.rimm_romm_rgb

# -*- coding: utf-8 -*-
"""
RIMM, ROMM and ERIMM Encodings
==============================

Defines the *RIMM, ROMM and ERIMM* encodings opto-electrical transfer functions
(OETF / OECF) and electro-optical transfer functions (EOTF / EOCF):

-   :func:`colour.models.oetf_ROMMRGB`
-   :func:`colour.models.eotf_ROMMRGB`
-   :func:`colour.models.oetf_ProPhotoRGB`
-   :func:`colour.models.eotf_ProPhotoRGB`
-   :func:`colour.models.oetf_RIMMRGB`
-   :func:`colour.models.eotf_RIMMRGB`
-   :func:`colour.models.log_encoding_ERIMMRGB`
-   :func:`colour.models.log_decoding_ERIMMRGB`

See Also
--------
`RGB Colourspaces Jupyter Notebook
<http://nbviewer.jupyter.org/github/colour-science/colour-notebooks/\
blob/master/notebooks/models/rgb.ipynb>`_

References
----------
-   :cite:`ANSI2003a` : ANSI. (2003). Specification of ROMM RGB. Retrieved from
    http://www.color.org/ROMMRGB.pdf
-   :cite:`Spaulding2000b` : Spaulding, K. E., Woolfe, G. J., &
    Giorgianni, E. J. (2000). Reference Input/Output Medium Metric RGB Color
    Encodings (RIMM/ROMM RGB). Retrieved from
    http://www.photo-lovers.org/pdf/color/romm.pdf
"""

from __future__ import division, unicode_literals

import numpy as np

from colour.algebra import spow
from colour.utilities import (as_float, as_int, domain_range_scale,
                              from_range_1, to_domain_1)

__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013-2019 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'

__all__ = [
    'oetf_ROMMRGB', 'eotf_ROMMRGB', 'oetf_ProPhotoRGB', 'eotf_ProPhotoRGB',
    'oetf_RIMMRGB', 'eotf_RIMMRGB', 'log_encoding_ERIMMRGB',
    'log_decoding_ERIMMRGB'
]


[docs]def oetf_ROMMRGB(X, bit_depth=8, out_int=False): """ Defines the *ROMM RGB* encoding opto-electronic transfer function (OETF / OECF). Parameters ---------- X : numeric or array_like Linear data :math:`X_{ROMM}`. bit_depth : int, optional Bit depth used for conversion. out_int : bool, optional Whether to return value as integer code value or float equivalent of a code value at a given bit depth. Returns ------- numeric or ndarray Non-linear data :math:`X'_{ROMM}`. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X_p`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ - \\* This definition has an output integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`ANSI2003a`, :cite:`Spaulding2000b` Examples -------- >>> oetf_ROMMRGB(0.18) # doctest: +ELLIPSIS 0.3857114... >>> oetf_ROMMRGB(0.18, out_int=True) 98 """ X = to_domain_1(X) I_max = 2 ** bit_depth - 1 E_t = 16 ** (1.8 / (1 - 1.8)) X_p = np.where(X < E_t, X * 16 * I_max, spow(X, 1 / 1.8) * I_max) if out_int: return as_int(np.round(X_p)) else: return as_float(from_range_1(X_p / I_max))
[docs]def eotf_ROMMRGB(X_p, bit_depth=8, in_int=False): """ Defines the *ROMM RGB* encoding electro-optical transfer function (EOTF / EOCF). Parameters ---------- X_p : numeric or array_like Non-linear data :math:`X'_{ROMM}`. bit_depth : int, optional Bit depth used for conversion. in_int : bool, optional Whether to treat the input value as integer code value or float equivalent of a code value at a given bit depth. Returns ------- numeric or ndarray Linear data :math:`X_{ROMM}`. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X_p`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ - \\* This definition has an input integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`ANSI2003a`, :cite:`Spaulding2000b` Examples -------- >>> eotf_ROMMRGB(0.385711424751138) # doctest: +ELLIPSIS 0.1... >>> eotf_ROMMRGB(98, in_int=True) # doctest: +ELLIPSIS 0.1... """ X_p = to_domain_1(X_p) I_max = 2 ** bit_depth - 1 if not in_int: X_p = X_p * I_max E_t = 16 ** (1.8 / (1 - 1.8)) X = np.where( X_p < 16 * E_t * I_max, X_p / (16 * I_max), spow(X_p / I_max, 1.8), ) return as_float(from_range_1(X))
oetf_ProPhotoRGB = oetf_ROMMRGB eotf_ProPhotoRGB = eotf_ROMMRGB
[docs]def oetf_RIMMRGB(X, bit_depth=8, out_int=False, E_clip=2.0): """ Defines the *RIMM RGB* encoding opto-electronic transfer function (OETF / OECF). *RIMM RGB* encoding non-linearity is based on that specified by *Recommendation ITU-R BT.709-6*. Parameters ---------- X : numeric or array_like Linear data :math:`X_{RIMM}`. bit_depth : int, optional Bit depth used for conversion. out_int : bool, optional Whether to return value as integer code value or float equivalent of a code value at a given bit depth. E_clip : numeric, optional Maximum exposure level. Returns ------- numeric or ndarray Non-linear data :math:`X'_{RIMM}`. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X_p`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ - \\* This definition has an output integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`Spaulding2000b` Examples -------- >>> oetf_RIMMRGB(0.18) # doctest: +ELLIPSIS 0.2916737... >>> oetf_RIMMRGB(0.18, out_int=True) 74 """ X = to_domain_1(X) I_max = 2 ** bit_depth - 1 V_clip = 1.099 * spow(E_clip, 0.45) - 0.099 q = I_max / V_clip X_p = q * np.select([X < 0.0, X < 0.018, X >= 0.018, X > E_clip], [0, 4.5 * X, 1.099 * spow(X, 0.45) - 0.099, I_max]) if out_int: return as_int(np.round(X_p)) else: return as_float(from_range_1(X_p / I_max))
[docs]def eotf_RIMMRGB(X_p, bit_depth=8, in_int=False, E_clip=2.0): """ Defines the *RIMM RGB* encoding electro-optical transfer function (EOTF / EOCF). Parameters ---------- X_p : numeric or array_like Non-linear data :math:`X'_{RIMM}`. bit_depth : int, optional Bit depth used for conversion. in_int : bool, optional Whether to treat the input value as integer code value or float equivalent of a code value at a given bit depth. E_clip : numeric, optional Maximum exposure level. Returns ------- numeric or ndarray Linear data :math:`X_{RIMM}`. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X_p`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ - \\* This definition has an input integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`Spaulding2000b` Examples -------- >>> eotf_RIMMRGB(0.291673732475746) # doctest: +ELLIPSIS 0.1... >>> eotf_RIMMRGB(74, in_int=True) # doctest: +ELLIPSIS 0.1... """ X_p = to_domain_1(X_p) I_max = 2 ** bit_depth - 1 if not in_int: X_p = X_p * I_max V_clip = 1.099 * spow(E_clip, 0.45) - 0.099 m = V_clip * X_p / I_max with domain_range_scale('ignore'): X = np.where( X_p / I_max < oetf_RIMMRGB(0.018, bit_depth, E_clip=E_clip), m / 4.5, spow((m + 0.099) / 1.099, 1 / 0.45), ) return as_float(from_range_1(X))
[docs]def log_encoding_ERIMMRGB(X, bit_depth=8, out_int=False, E_min=0.001, E_clip=316.2): """ Defines the *ERIMM RGB* log encoding curve / opto-electronic transfer function (OETF / OECF). Parameters ---------- X : numeric or array_like Linear data :math:`X_{ERIMM}`. bit_depth : int, optional Bit depth used for conversion. out_int : bool, optional Whether to return value as integer code value or float equivalent of a code value at a given bit depth. E_min : numeric, optional Minimum exposure limit. E_clip : numeric, optional Maximum exposure limit. Returns ------- numeric or ndarray Non-linear data :math:`X'_{ERIMM}`. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X_p`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ - \\* This definition has an output integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`Spaulding2000b` Examples -------- >>> log_encoding_ERIMMRGB(0.18) # doctest: +ELLIPSIS 0.4100523... >>> log_encoding_ERIMMRGB(0.18, out_int=True) 105 """ X = to_domain_1(X) I_max = 2 ** bit_depth - 1 E_t = np.exp(1) * E_min X_p = np.select([ X < 0.0, X <= E_t, X > E_t, X > E_clip, ], [ 0, I_max * ((np.log(E_t) - np.log(E_min)) / (np.log(E_clip) - np.log(E_min))) * (X / E_t), I_max * ( (np.log(X) - np.log(E_min)) / (np.log(E_clip) - np.log(E_min))), I_max, ]) if out_int: return as_int(np.round(X_p)) else: return as_float(from_range_1(X_p / I_max))
[docs]def log_decoding_ERIMMRGB(X_p, bit_depth=8, in_int=False, E_min=0.001, E_clip=316.2): """ Defines the *ERIMM RGB* log decoding curve / electro-optical transfer function (EOTF / EOCF). Parameters ---------- X_p : numeric or array_like Non-linear data :math:`X'_{ERIMM}`. bit_depth : int, optional Bit depth used for conversion. in_int : bool, optional Whether to treat the input value as integer code value or float equivalent of a code value at a given bit depth. E_min : numeric, optional Minimum exposure limit. E_clip : numeric, optional Maximum exposure limit. Returns ------- numeric or ndarray Linear data :math:`X_{ERIMM}`. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X_p`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``X`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ - \\* This definition has an input integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`Spaulding2000b` Examples -------- >>> log_decoding_ERIMMRGB(0.410052389492129) # doctest: +ELLIPSIS 0.1... >>> log_decoding_ERIMMRGB(105, in_int=True) # doctest: +ELLIPSIS 0.1... """ X_p = to_domain_1(X_p) I_max = 2 ** bit_depth - 1 if not in_int: X_p = X_p * I_max E_t = np.exp(1) * E_min X = np.where( X_p <= I_max * ( (np.log(E_t) - np.log(E_min)) / (np.log(E_clip) - np.log(E_min))), ((np.log(E_clip) - np.log(E_min)) / (np.log(E_t) - np.log(E_min))) * ( (X_p * E_t) / I_max), np.exp((X_p / I_max) * (np.log(E_clip) - np.log(E_min)) + np.log(E_min)), ) return as_float(from_range_1(X))