colour.continuous.Signal#
- class colour.continuous.Signal(data: ArrayLike | dict | Self | Series | None = None, domain: ArrayLike | None = None, **kwargs: Any)[source]#
Bases:
AbstractContinuousFunction
Define the base class for continuous signal.
The class implements the
Signal.function()
method so that evaluating the function for any independent domain variable \(x \in\mathbb{R}\) returns a corresponding range variable \(y \in\mathbb{R}\). It adopts an interpolating function encapsulated inside an extrapolating function. The resulting function independent domain, stored as discrete values in thecolour.continuous.Signal.domain
property corresponds with the function dependent and already known range stored in thecolour.continuous.Signal.range
property.Important
Specific documentation about getting, setting, indexing and slicing the continuous signal values is available in the Spectral Representation and Continuous Signal section.
- Parameters:
data (ArrayLike | dict | Self | Series | None) – Data to be stored in the continuous signal.
domain (ArrayLike | None) – Values to initialise the
colour.continuous.Signal.domain
attribute with. If bothdata
anddomain
arguments are defined, the latter with be used to initialise thecolour.continuous.Signal.domain
property.dtype – float point data type.
extrapolator – Extrapolator class type to use as extrapolating function.
extrapolator_kwargs – Arguments to use when instantiating the extrapolating function.
interpolator – Interpolator class type to use as interpolating function.
interpolator_kwargs – Arguments to use when instantiating the interpolating function.
name – Continuous signal name.
kwargs (Any)
Attributes
Methods
Examples
Instantiation with implicit domain:
>>> range_ = np.linspace(10, 100, 10) >>> print(Signal(range_)) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 40.] [ 4. 50.] [ 5. 60.] [ 6. 70.] [ 7. 80.] [ 8. 90.] [ 9. 100.]]
Instantiation with explicit domain:
>>> domain = np.arange(100, 1100, 100) >>> print(Signal(range_, domain)) [[ 100. 10.] [ 200. 20.] [ 300. 30.] [ 400. 40.] [ 500. 50.] [ 600. 60.] [ 700. 70.] [ 800. 80.] [ 900. 90.] [ 1000. 100.]]
Instantiation with a dict:
>>> print(Signal(dict(zip(domain, range_)))) [[ 100. 10.] [ 200. 20.] [ 300. 30.] [ 400. 40.] [ 500. 50.] [ 600. 60.] [ 700. 70.] [ 800. 80.] [ 900. 90.] [ 1000. 100.]]
Instantiation with a Pandas
pandas.Series
:>>> if is_pandas_installed(): ... from pandas import Series ... ... print(Signal(Series(dict(zip(domain, range_))))) [[ 100. 10.] [ 200. 20.] [ 300. 30.] [ 400. 40.] [ 500. 50.] [ 600. 60.] [ 700. 70.] [ 800. 80.] [ 900. 90.] [ 1000. 100.]]
Retrieving domain y variable for arbitrary range x variable:
>>> x = 150 >>> range_ = np.sin(np.linspace(0, 1, 10)) >>> Signal(range_, domain)[x] 0.0359701... >>> x = np.linspace(100, 1000, 3) >>> Signal(range_, domain)[x] array([ ..., 4.7669395...e-01, 8.4147098...e-01])
Using an alternative interpolating function:
>>> x = 150 >>> from colour.algebra import CubicSplineInterpolator >>> Signal(range_, domain, interpolator=CubicSplineInterpolator)[ ... x ... ] 0.0555274... >>> x = np.linspace(100, 1000, 3) >>> Signal(range_, domain, interpolator=CubicSplineInterpolator)[ ... x ... ] array([ 0. , 0.4794253..., 0.8414709...])
- __init__(data: ArrayLike | dict | Self | Series | None = None, domain: ArrayLike | None = None, **kwargs: Any) None [source]#
- property dtype: Type[DTypeFloat]#
Getter and setter property for the continuous signal dtype.
- Parameters:
value – Value to set the continuous signal dtype with.
- Returns:
Continuous signal dtype.
- Return type:
DTypeFloat
- property domain: NDArrayFloat#
Getter and setter property for the continuous signal independent domain variable \(x\).
- Parameters:
value – Value to set the continuous signal independent domain variable \(x\) with.
- Returns:
Continuous signal independent domain variable \(x\).
- Return type:
- property range: NDArrayFloat#
Getter and setter property for the continuous signal corresponding range variable \(y\).
- Parameters:
value – Value to set the continuous signal corresponding range \(y\) variable with.
- Returns:
Continuous signal corresponding range variable \(y\).
- Return type:
- property interpolator: Type[ProtocolInterpolator]#
Getter and setter property for the continuous signal interpolator type.
- Parameters:
value – Value to set the continuous signal interpolator type with.
- Returns:
Continuous signal interpolator type.
- Return type:
Type[ProtocolInterpolator]
- property interpolator_kwargs: dict#
Getter and setter property for the continuous signal interpolator instantiation time arguments.
- Parameters:
value – Value to set the continuous signal interpolator instantiation time arguments to.
- Returns:
Continuous signal interpolator instantiation time arguments.
- Return type:
- property extrapolator: Type[ProtocolExtrapolator]#
Getter and setter property for the continuous signal extrapolator type.
- Parameters:
value – Value to set the continuous signal extrapolator type with.
- Returns:
Continuous signal extrapolator type.
- Return type:
Type[ProtocolExtrapolator]
- property extrapolator_kwargs: dict#
Getter and setter property for the continuous signal extrapolator instantiation time arguments.
- Parameters:
value – Value to set the continuous signal extrapolator instantiation time arguments to.
- Returns:
Continuous signal extrapolator instantiation time arguments.
- Return type:
- property function: Callable#
Getter property for the continuous signal callable.
- Returns:
Continuous signal callable.
- Return type:
Callable
- __str__() str [source]#
Return a formatted string representation of the continuous signal.
- Returns:
Formatted string representation.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> print(Signal(range_)) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 40.] [ 4. 50.] [ 5. 60.] [ 6. 70.] [ 7. 80.] [ 8. 90.] [ 9. 100.]]
- __repr__() str [source]#
Return an evaluable string representation of the continuous signal.
- Returns:
Evaluable string representation.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> Signal(range_) Signal([[ 0., 10.], [ 1., 20.], [ 2., 30.], [ 3., 40.], [ 4., 50.], [ 5., 60.], [ 6., 70.], [ 7., 80.], [ 8., 90.], [ 9., 100.]], KernelInterpolator, {}, Extrapolator, {'method': 'Constant', 'left': nan, 'right': nan})
- __hash__() int [source]#
Return the abstract continuous function hash.
- Returns:
Object hash.
- Return type:
- __getitem__(x: ArrayLike | slice) NDArrayFloat [source]#
Return the corresponding range variable \(y\) for independent domain variable \(x\).
- Parameters:
x (ArrayLike | slice) – Independent domain variable \(x\).
- Returns:
Variable \(y\) range value.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> signal = Signal(range_) >>> print(signal) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 40.] [ 4. 50.] [ 5. 60.] [ 6. 70.] [ 7. 80.] [ 8. 90.] [ 9. 100.]] >>> signal[0] 10.0 >>> signal[np.array([0, 1, 2])] array([ 10., 20., 30.]) >>> signal[0:3] array([ 10., 20., 30.]) >>> signal[np.linspace(0, 5, 5)] array([ 10. , 22.8348902..., 34.8004492..., 47.5535392..., 60. ])
- __setitem__(x: ArrayLike | slice, y: ArrayLike)[source]#
Set the corresponding range variable \(y\) for independent domain variable \(x\).
- Parameters:
x (ArrayLike | slice) – Independent domain variable \(x\).
y (ArrayLike) – Corresponding range variable \(y\).
Examples
>>> range_ = np.linspace(10, 100, 10) >>> signal = Signal(range_) >>> print(signal) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 40.] [ 4. 50.] [ 5. 60.] [ 6. 70.] [ 7. 80.] [ 8. 90.] [ 9. 100.]] >>> signal[0] = 20 >>> signal[0] 20.0 >>> signal[np.array([0, 1, 2])] = 30 >>> signal[np.array([0, 1, 2])] array([ 30., 30., 30.]) >>> signal[0:3] = 40 >>> signal[0:3] array([ 40., 40., 40.]) >>> signal[np.linspace(0, 5, 5)] = 50 >>> print(signal) [[ 0. 50. ] [ 1. 40. ] [ 1.25 50. ] [ 2. 40. ] [ 2.5 50. ] [ 3. 40. ] [ 3.75 50. ] [ 4. 50. ] [ 5. 50. ] [ 6. 70. ] [ 7. 80. ] [ 8. 90. ] [ 9. 100. ]] >>> signal[np.array([0, 1, 2])] = np.array([10, 20, 30]) >>> print(signal) [[ 0. 10. ] [ 1. 20. ] [ 1.25 50. ] [ 2. 30. ] [ 2.5 50. ] [ 3. 40. ] [ 3.75 50. ] [ 4. 50. ] [ 5. 50. ] [ 6. 70. ] [ 7. 80. ] [ 8. 90. ] [ 9. 100. ]]
- __contains__(x: ArrayLike | slice) bool [source]#
Return whether the continuous signal contains given independent domain variable \(x\).
- Parameters:
x (ArrayLike | slice) – Independent domain variable \(x\).
- Returns:
Whether \(x\) domain value is contained.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> signal = Signal(range_) >>> 0 in signal True >>> 0.5 in signal True >>> 1000 in signal False
- __eq__(other: Any) bool [source]#
Return whether the continuous signal is equal to given other object.
- Parameters:
other (Any) – Object to test whether it is equal to the continuous signal.
- Returns:
Whether given object is equal to the continuous signal.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> signal_1 = Signal(range_) >>> signal_2 = Signal(range_) >>> signal_1 == signal_2 True >>> signal_2[0] = 20 >>> signal_1 == signal_2 False >>> signal_2[0] = 10 >>> signal_1 == signal_2 True >>> from colour.algebra import CubicSplineInterpolator >>> signal_2.interpolator = CubicSplineInterpolator >>> signal_1 == signal_2 False
- __ne__(other: Any) bool [source]#
Return whether the continuous signal is not equal to given other object.
- Parameters:
other (Any) – Object to test whether it is not equal to the continuous signal.
- Returns:
Whether given object is not equal to the continuous signal.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> signal_1 = Signal(range_) >>> signal_2 = Signal(range_) >>> signal_1 != signal_2 False >>> signal_2[0] = 20 >>> signal_1 != signal_2 True >>> signal_2[0] = 10 >>> signal_1 != signal_2 False >>> from colour.algebra import CubicSplineInterpolator >>> signal_2.interpolator = CubicSplineInterpolator >>> signal_1 != signal_2 True
- arithmetical_operation(a: ArrayLike | AbstractContinuousFunction, operation: Literal['+', '-', '*', '/', '**'], in_place: bool = False) AbstractContinuousFunction [source]#
Perform given arithmetical operation with operand \(a\), the operation can be either performed on a copy or in-place.
- Parameters:
a (ArrayLike | AbstractContinuousFunction) – Operand \(a\).
operation (Literal['+', '-', '*', '/', '**']) – Operation to perform.
in_place (bool) – Operation happens in place.
- Returns:
Continuous signal.
- Return type:
Examples
Adding a single numeric variable:
>>> range_ = np.linspace(10, 100, 10) >>> signal_1 = Signal(range_) >>> print(signal_1) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 40.] [ 4. 50.] [ 5. 60.] [ 6. 70.] [ 7. 80.] [ 8. 90.] [ 9. 100.]] >>> print(signal_1.arithmetical_operation(10, "+", True)) [[ 0. 20.] [ 1. 30.] [ 2. 40.] [ 3. 50.] [ 4. 60.] [ 5. 70.] [ 6. 80.] [ 7. 90.] [ 8. 100.] [ 9. 110.]]
Adding an ArrayLike variable:
>>> a = np.linspace(10, 100, 10) >>> print(signal_1.arithmetical_operation(a, "+", True)) [[ 0. 30.] [ 1. 50.] [ 2. 70.] [ 3. 90.] [ 4. 110.] [ 5. 130.] [ 6. 150.] [ 7. 170.] [ 8. 190.] [ 9. 210.]]
Adding a
colour.continuous.Signal
class:>>> signal_2 = Signal(range_) >>> print(signal_1.arithmetical_operation(signal_2, "+", True)) [[ 0. 40.] [ 1. 70.] [ 2. 100.] [ 3. 130.] [ 4. 160.] [ 5. 190.] [ 6. 220.] [ 7. 250.] [ 8. 280.] [ 9. 310.]]
- static signal_unpack_data(data=Optional[Union[ArrayLike, dict, Series, 'Signal']], domain: ArrayLike | None = None, dtype: Type[DTypeFloat] | None = None) tuple [source]#
Unpack given data for continuous signal instantiation.
- Parameters:
data – Data to unpack for continuous signal instantiation.
domain (ArrayLike | None) – Values to initialise the
colour.continuous.Signal.domain
attribute with. If bothdata
anddomain
arguments are defined, the latter will be used to initialise thecolour.continuous.Signal.domain
property.dtype (Type[DTypeFloat] | None) – float point data type.
- Returns:
Independent domain variable \(x\) and corresponding range variable \(y\) unpacked for continuous signal instantiation.
- Return type:
Examples
Unpacking using implicit domain:
>>> range_ = np.linspace(10, 100, 10) >>> domain, range_ = Signal.signal_unpack_data(range_) >>> print(domain) [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] >>> print(range_) [ 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
Unpacking using explicit domain:
>>> domain = np.arange(100, 1100, 100) >>> domain, range = Signal.signal_unpack_data(range_, domain) >>> print(domain) [ 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.] >>> print(range_) [ 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
Unpacking using a dict:
>>> domain, range_ = Signal.signal_unpack_data(dict(zip(domain, range_))) >>> print(domain) [ 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.] >>> print(range_) [ 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
Unpacking using a Pandas
pandas.Series
:>>> if is_pandas_installed(): ... from pandas import Series ... ... domain, range = Signal.signal_unpack_data( ... Series(dict(zip(domain, range_))) ... ) ... >>> print(domain) [ 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.] >>> print(range_) [ 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
Unpacking using a
colour.continuous.Signal
class:>>> domain, range_ = Signal.signal_unpack_data(Signal(range_, domain)) >>> print(domain) [ 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.] >>> print(range_) [ 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
- fill_nan(method: Literal['Interpolation', 'Constant'] | str = 'Interpolation', default: Real = 0) Signal [source]#
Fill NaNs in independent domain variable \(x\) and corresponding range variable \(y\) using given method.
- Parameters:
method (Literal['Interpolation', 'Constant'] | str) – Interpolation method linearly interpolates through the NaNs, Constant method replaces NaNs with
default
.default (Real) – Value to use with the Constant method.
- Returns:
NaNs filled continuous signal.
- Return type:
Examples
>>> range_ = np.linspace(10, 100, 10) >>> signal = Signal(range_) >>> signal[3:7] = np.nan >>> print(signal) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. nan] [ 4. nan] [ 5. nan] [ 6. nan] [ 7. 80.] [ 8. 90.] [ 9. 100.]] >>> print(signal.fill_nan()) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 40.] [ 4. 50.] [ 5. 60.] [ 6. 70.] [ 7. 80.] [ 8. 90.] [ 9. 100.]] >>> signal[3:7] = np.nan >>> print(signal.fill_nan(method="Constant")) [[ 0. 10.] [ 1. 20.] [ 2. 30.] [ 3. 0.] [ 4. 0.] [ 5. 0.] [ 6. 0.] [ 7. 80.] [ 8. 90.] [ 9. 100.]]
- to_series() Series [source]#
Convert the continuous signal to a Pandas
pandas.Series
class instance.- Returns:
Continuous signal as a Pandas
pandas.Series
class instance.- Return type:
Examples
>>> if is_pandas_installed(): ... range_ = np.linspace(10, 100, 10) ... signal = Signal(range_) ... print(signal.to_series()) 0.0 10.0 1.0 20.0 2.0 30.0 3.0 40.0 4.0 50.0 5.0 60.0 6.0 70.0 7.0 80.0 8.0 90.0 9.0 100.0 Name: Signal (...), dtype: float64