colour.read_spectral_data_from_csv_file#
- colour.read_spectral_data_from_csv_file(path: str, **kwargs: Any) Dict[str, <sphinx.util.inspect.TypeAliasForwardRef object at 0x7fdaf1541e90>] [source]#
Read the spectral data from given CSV file in the following form:
390, 4.15003E-04, 3.68349E-04, 9.54729E-03 395, 1.05192E-03, 9.58658E-04, 2.38250E-02 400, 2.40836E-03, 2.26991E-03, 5.66498E-02 ... 830, 9.74306E-07, 9.53411E-08, 0.00000
and returns it as an dict as follows:
{ 'wavelength': ndarray, 'field 1': ndarray, 'field 2': ndarray, ..., 'field n': ndarray }
- Parameters
- Returns
CSV file content.
- Return type
Notes
A CSV spectral data file should define at least define two fields: one for the wavelengths and one for the associated values of one spectral distribution.
Examples
>>> import os >>> from pprint import pprint >>> csv_file = os.path.join( ... os.path.dirname(__file__), ... "tests", ... "resources", ... "colorchecker_n_ohta.csv", ... ) >>> sds_data = read_spectral_data_from_csv_file(csv_file) >>> pprint(list(sds_data.keys())) ['wavelength', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24']