colour.difference.delta_E_CIE1994#

colour.difference.delta_E_CIE1994(Lab_1: ArrayLike, Lab_2: ArrayLike, textiles: bool = False) NDArrayFloat[source]#

Return the difference \(\Delta E_{94}\) between two given CIE L*a*b* colourspace arrays using CIE 1994 recommendation.

Parameters:
  • Lab_1 (ArrayLike) – CIE L*a*b* colourspace array 1.

  • Lab_2 (ArrayLike) – CIE L*a*b* colourspace array 2.

  • textiles (bool) – Textiles application specific parametric factors, \(k_L=2,\ k_C=k_H=1,\ k_1=0.048,\ k_2=0.014\) weights are used instead of \(k_L=k_C=k_H=1,\ k_1=0.045,\ k_2=0.015\).

Returns:

Colour difference \(\Delta E_{94}\).

Return type:

numpy.ndarray

Notes

Domain

Scale - Reference

Scale - 1

Lab_1

L_1 : [0, 100]

a_1 : [-100, 100]

b_1 : [-100, 100]

L_1 : [0, 1]

a_1 : [-1, 1]

b_1 : [-1, 1]

Lab_2

L_2 : [0, 100]

a_2 : [-100, 100]

b_2 : [-100, 100]

L_2 : [0, 1]

a_2 : [-1, 1]

b_2 : [-1, 1]

  • CIE 1994 colour differences are not symmetrical: difference between Lab_1 and Lab_2 may not be the same as difference between Lab_2 and Lab_1 thus one colour must be understood to be the reference against which a sample colour is compared.

References

[Lin11]

Examples

>>> Lab_1 = np.array([48.99183622, -0.10561667, 400.65619925])
>>> Lab_2 = np.array([50.65907324, -0.11671910, 402.82235718])
>>> delta_E_CIE1994(Lab_1, Lab_2)  
1.6711191...
>>> delta_E_CIE1994(Lab_1, Lab_2, textiles=True)  
0.8404677...