colour.temperature.uv_to_CCT_Ohno2013#
- colour.temperature.uv_to_CCT_Ohno2013(uv: ArrayLike, cmfs: MultiSpectralDistributions | None = None, start: float | None = None, end: float | None = None, count: int | None = None, iterations: int | None = None) NDArrayFloat [source]#
Return the correlated colour temperature \(T_{cp}\) and \(\Delta_{uv}\) from given CIE UCS colourspace uv chromaticity coordinates, colour matching functions and temperature range using Ohno (2013) method.
The
iterations
parameter defines the calculations’ precision: The higher its value, the more planckian tables will be generated through cascade expansion in order to converge to the exact solution.- Parameters:
uv (ArrayLike) – CIE UCS colourspace uv chromaticity coordinates.
cmfs (MultiSpectralDistributions | None) – Standard observer colour matching functions, default to the CIE 1931 2 Degree Standard Observer.
start (float | None) – Temperature range start in kelvin degrees, default to 1000.
end (float | None) – Temperature range end in kelvin degrees, default to 100000.
count (int | None) – Temperatures count/samples in the planckian tables, default to 10.
iterations (int | None) – Number of planckian tables to generate, default to 6.
- Returns:
Correlated colour temperature \(T_{cp}\), \(\Delta_{uv}\).
- Return type:
References
[Ohn14]
Examples
>>> from pprint import pprint >>> from colour import MSDS_CMFS, SPECTRAL_SHAPE_DEFAULT >>> cmfs = ( ... MSDS_CMFS["CIE 1931 2 Degree Standard Observer"] ... .copy() ... .align(SPECTRAL_SHAPE_DEFAULT) ... ) >>> uv = np.array([0.1978, 0.3122]) >>> uv_to_CCT_Ohno2013(uv, cmfs) array([ 6.50747...e+03, 3.22334...e-03])