colour.LUT3D#
- class colour.LUT3D(table: ArrayLike | None = None, name: str | None = None, domain: ArrayLike | None = None, size: ArrayLike | None = None, comments: Sequence | None = None)[source]#
Bases:
AbstractLUT
Define the base class for a 3D LUT.
- Parameters:
table (ArrayLike | None) – Underlying LUT table.
name (str | None) – LUT name.
domain (ArrayLike | None) – LUT domain, also used to define the instantiation time default table domain.
size (ArrayLike | None) – Size of the instantiation time default table, default to 33.
comments (Sequence | None) – Comments to add to the LUT.
Methods
Examples
Instantiating a unity LUT with a table with 16x16x16x3 elements:
>>> print(LUT3D(size=16)) LUT3D - Unity 16 ---------------- Dimensions : 3 Domain : [[ 0. 0. 0.] [ 1. 1. 1.]] Size : (16, 16, 16, 3)
Instantiating a LUT using a custom table with 16x16x16x3 elements:
>>> print(LUT3D(LUT3D.linear_table(16) ** (1 / 2.2))) LUT3D - ... --------... Dimensions : 3 Domain : [[ 0. 0. 0.] [ 1. 1. 1.]] Size : (16, 16, 16, 3)
Instantiating a LUT using a custom table with 16x16x16x3 elements, custom name, custom domain and comments:
>>> from colour.algebra import spow >>> domain = np.array([[-0.1, -0.2, -0.4], [1.5, 3.0, 6.0]]) >>> print( ... LUT3D( ... spow(LUT3D.linear_table(16), 1 / 2.2), ... "My LUT", ... domain, ... comments=["A first comment.", "A second comment."], ... ) ... ) LUT3D - My LUT -------------- Dimensions : 3 Domain : [[-0.1 -0.2 -0.4] [ 1.5 3. 6. ]] Size : (16, 16, 16, 3) Comment 01 : A first comment. Comment 02 : A second comment.
- __init__(table: ArrayLike | None = None, name: str | None = None, domain: ArrayLike | None = None, size: ArrayLike | None = None, comments: Sequence | None = None) None [source]#
- is_domain_explicit() bool [source]#
Return whether the LUT domain is explicit (or implicit).
An implicit domain is defined by its shape only:
[[0 0 0] [1 1 1]]
While an explicit domain defines every single discrete samples:
[[0.0 0.0 0.0] [0.1 0.1 0.1] [0.2 0.2 0.2] [0.3 0.3 0.3] [0.4 0.4 0.4] [0.8 0.8 0.8] [1.0 1.0 1.0]]
- Returns:
Is LUT domain explicit.
- Return type:
Examples
>>> LUT3D().is_domain_explicit() False >>> domain = np.array([[-0.1, -0.2, -0.4], [0.7, 1.4, 6.0], [1.5, 3.0, np.nan]]) >>> LUT3D(domain=domain).is_domain_explicit() True
- static linear_table(size: ArrayLike | None = None, domain: ArrayLike | None = None) NDArrayFloat [source]#
Return a linear table, the number of output samples \(n\) is equal to
size**3 * 3
orsize[0] * size[1] * size[2] * 3
.- Parameters:
size (ArrayLike | None) – Expected table size, default to 33.
domain (ArrayLike | None) – Domain of the table.
- Returns:
Linear table with
size**3 * 3
orsize[0] * size[1] * size[2] * 3
samples.- Return type:
Examples
>>> LUT3D.linear_table(3, np.array([[-0.1, -0.2, -0.4], [1.5, 3.0, 6.0]])) array([[[[-0.1, -0.2, -0.4], [-0.1, -0.2, 2.8], [-0.1, -0.2, 6. ]], [[-0.1, 1.4, -0.4], [-0.1, 1.4, 2.8], [-0.1, 1.4, 6. ]], [[-0.1, 3. , -0.4], [-0.1, 3. , 2.8], [-0.1, 3. , 6. ]]], [[[ 0.7, -0.2, -0.4], [ 0.7, -0.2, 2.8], [ 0.7, -0.2, 6. ]], [[ 0.7, 1.4, -0.4], [ 0.7, 1.4, 2.8], [ 0.7, 1.4, 6. ]], [[ 0.7, 3. , -0.4], [ 0.7, 3. , 2.8], [ 0.7, 3. , 6. ]]], [[[ 1.5, -0.2, -0.4], [ 1.5, -0.2, 2.8], [ 1.5, -0.2, 6. ]], [[ 1.5, 1.4, -0.4], [ 1.5, 1.4, 2.8], [ 1.5, 1.4, 6. ]], [[ 1.5, 3. , -0.4], [ 1.5, 3. , 2.8], [ 1.5, 3. , 6. ]]]]) >>> LUT3D.linear_table( ... np.array([3, 3, 2]), ... np.array([[-0.1, -0.2, -0.4], [1.5, 3.0, 6.0]]), ... ) array([[[[-0.1, -0.2, -0.4], [-0.1, -0.2, 6. ]], [[-0.1, 1.4, -0.4], [-0.1, 1.4, 6. ]], [[-0.1, 3. , -0.4], [-0.1, 3. , 6. ]]], [[[ 0.7, -0.2, -0.4], [ 0.7, -0.2, 6. ]], [[ 0.7, 1.4, -0.4], [ 0.7, 1.4, 6. ]], [[ 0.7, 3. , -0.4], [ 0.7, 3. , 6. ]]], [[[ 1.5, -0.2, -0.4], [ 1.5, -0.2, 6. ]], [[ 1.5, 1.4, -0.4], [ 1.5, 1.4, 6. ]], [[ 1.5, 3. , -0.4], [ 1.5, 3. , 6. ]]]]) >>> domain = np.array([[-0.1, -0.2, -0.4], [0.7, 1.4, 6.0], [1.5, 3.0, np.nan]]) >>> LUT3D.linear_table(domain=domain) array([[[[-0.1, -0.2, -0.4], [-0.1, -0.2, 6. ]], [[-0.1, 1.4, -0.4], [-0.1, 1.4, 6. ]], [[-0.1, 3. , -0.4], [-0.1, 3. , 6. ]]], [[[ 0.7, -0.2, -0.4], [ 0.7, -0.2, 6. ]], [[ 0.7, 1.4, -0.4], [ 0.7, 1.4, 6. ]], [[ 0.7, 3. , -0.4], [ 0.7, 3. , 6. ]]], [[[ 1.5, -0.2, -0.4], [ 1.5, -0.2, 6. ]], [[ 1.5, 1.4, -0.4], [ 1.5, 1.4, 6. ]], [[ 1.5, 3. , -0.4], [ 1.5, 3. , 6. ]]]])
- invert(**kwargs: Any) LUT3D [source]#
Compute and returns an inverse copy of the LUT.
- Parameters:
extrapolate – Whether to extrapolate the LUT when computing its inverse. Extrapolation is performed by reflecting the LUT cube along its 8 faces. Note that the domain is extended beyond [0, 1], thus the LUT might not be handled properly in other software.
interpolator – Interpolator class type or object to use as interpolating function.
query_size – Number of points to query in the KDTree, their mean is computed, resulting in a smoother result.
size – Size of the inverse LUT. With the given implementation, it is good practise to double the size of the inverse LUT to provide a smoother result. If
size
is not given, \(2^{\sqrt{size_{LUT}} + 1} + 1\) will be used instead.kwargs (Any)
- Returns:
Inverse LUT class instance.
- Return type:
Examples
>>> LUT = LUT3D() >>> print(LUT) LUT3D - Unity 33 ---------------- Dimensions : 3 Domain : [[ 0. 0. 0.] [ 1. 1. 1.]] Size : (33, 33, 33, 3) >>> print(LUT.invert()) LUT3D - Unity 33 - Inverse -------------------------- Dimensions : 3 Domain : [[ 0. 0. 0.] [ 1. 1. 1.]] Size : (108, 108, 108, 3)
- apply(RGB: ArrayLike, **kwargs: Any) NDArrayFloat [source]#
Apply the LUT to given RGB colourspace array using given method.
- Parameters:
RGB (ArrayLike) – RGB colourspace array to apply the LUT onto.
direction – Whether the LUT should be applied in the forward or inverse direction.
extrapolate – Whether to extrapolate the LUT when computing its inverse. Extrapolation is performed by reflecting the LUT cube along its 8 faces.
interpolator – Interpolator object to use as interpolating function.
interpolator_kwargs – Arguments to use when calling the interpolating function.
query_size – Number of points to query in the KDTree, their mean is computed, resulting in a smoother result.
size – Size of the inverse LUT. With the given implementation, it is good practise to double the size of the inverse LUT to provide a smoother result. If
size
is not given, \(2^{\sqrt{size_{LUT}} + 1} + 1\) will be used instead.kwargs (Any)
- Returns:
Interpolated RGB colourspace array.
- Return type:
Examples
>>> LUT = LUT3D(LUT3D.linear_table() ** (1 / 2.2)) >>> RGB = np.array([0.18, 0.18, 0.18]) >>> LUT.apply(RGB) array([ 0.4583277..., 0.4583277..., 0.4583277...]) >>> LUT.apply(LUT.apply(RGB), direction="Inverse") ... array([ 0.1781995..., 0.1809414..., 0.1809513...]) >>> from colour.algebra import spow >>> domain = np.array( ... [ ... [-0.1, -0.2, -0.4], ... [0.3, 1.4, 6.0], ... [0.7, 3.0, np.nan], ... [1.1, np.nan, np.nan], ... [1.5, np.nan, np.nan], ... ] ... ) >>> table = spow(LUT3D.linear_table(domain=domain), 1 / 2.2) >>> LUT = LUT3D(table, domain=domain) >>> RGB = np.array([0.18, 0.18, 0.18]) >>> LUT.apply(RGB) array([ 0.2996370..., -0.0901332..., -0.3949770...])