colour.algebra.least_square_mapping_MoorePenrose#
- colour.algebra.least_square_mapping_MoorePenrose(y: ArrayLike, x: ArrayLike) NDArrayFloat [source]#
Compute the least-squares mapping from dependent variable \(y\) to independent variable \(x\) using Moore-Penrose inverse.
- Parameters:
y (ArrayLike) – Dependent and already known \(y\) variable.
x (ArrayLike) – Independent \(x\) variable(s) values corresponding with \(y\) variable.
- Returns:
Least-squares mapping.
- Return type:
References
[FMH15]
Examples
>>> prng = np.random.RandomState(2) >>> y = prng.random_sample((24, 3)) >>> x = y + (prng.random_sample((24, 3)) - 0.5) * 0.5 >>> least_square_mapping_MoorePenrose(y, x) array([[ 1.0526376..., 0.1378078..., -0.2276339...], [ 0.0739584..., 1.0293994..., -0.1060115...], [ 0.0572550..., -0.2052633..., 1.1015194...]])