colour.colorimetry.whiteness_CIE2004#
- colour.colorimetry.whiteness_CIE2004(xy: ArrayLike, Y: ArrayLike, xy_n: ArrayLike, observer: Literal['CIE 1931 2 Degree Standard Observer', 'CIE 1964 10 Degree Standard Observer'] = 'CIE 1931 2 Degree Standard Observer') NDArrayFloat [source]#
Return the whiteness \(W\) or \(W_{10}\) and tint \(T\) or \(T_{10}\) of given sample CIE xy chromaticity coordinates using CIE 2004 method.
- Parameters:
xy (ArrayLike) – Chromaticity coordinates CIE xy of the sample.
Y (ArrayLike) – Tristimulus \(Y\) value of the sample.
xy_n (ArrayLike) – Chromaticity coordinates xy_n of a perfect diffuser.
observer (Literal['CIE 1931 2 Degree Standard Observer', 'CIE 1964 10 Degree Standard Observer']) – CIE Standard Observer used for computations, tint \(T\) or \(T_{10}\) value is dependent on viewing field angular subtense.
- Returns:
Whiteness \(W\) or \(W_{10}\) and tint \(T\) or \(T_{10}\) of given sample.
- Return type:
Notes
Domain
Scale - Reference
Scale - 1
Y
[0, 100]
[0, 1]
Range
Scale - Reference
Scale - 1
WT
[0, 100]
[0, 1]
This method may be used only for samples whose values of \(W\) or \(W_{10}\) lie within the following limits: greater than 40 and less than 5Y - 280, or 5Y10 - 280.
This method may be used only for samples whose values of \(T\) or \(T_{10}\) lie within the following limits: greater than -4 and less than +2.
Output whiteness \(W\) or \(W_{10}\) values larger than 100 indicate a bluish white while values smaller than 100 indicate a yellowish white.
Positive output tint \(T\) or \(T_{10}\) values indicate a greener tint while negative values indicate a redder tint.
References
Examples
>>> import numpy as np >>> xy = np.array([0.3167, 0.3334]) >>> xy_n = np.array([0.3139, 0.3311]) >>> whiteness_CIE2004(xy, 100, xy_n) array([ 93.85..., -1.305...])