colour.utilities.from_range_int#
- colour.utilities.from_range_int(a: ArrayLike, bit_depth: ArrayLike = 8, dtype: Type[DTypeFloat] | None = None) ndarray[Any, dtype[_ScalarType_co]] [source]#
Scale given array \(a\) from int range. The behaviour is as follows:
If Colour domain-range scale is ‘Reference’, the definition is entirely by-passed.
If Colour domain-range scale is ‘1’, array \(a\) is converted to
np.ndarray
and divided by \(2^{bit\_depth} - 1\).If Colour domain-range scale is ‘100’ (currently unsupported private value only used for unit tests), array \(a\) is converted to
np.ndarray
and divided by \(2^{bit\_depth} - 1\).
- Parameters:
a (ArrayLike) – Array \(a\) to scale from int range.
bit_depth (ArrayLike) – Bit-depth, usually int but can be a
numpy.ndarray
if some axis need different scaling to be brought from int range.dtype (Type[DTypeFloat] | None) – Data type used for the conversion to
np.ndarray
.
- Returns:
Array \(a\) scaled from int range.
- Return type:
Warning
The scale conversion of variable \(a\) happens in-place, i.e., \(a\) will be mutated!
Notes
To avoid precision issues and rounding, the scaling is performed on float numbers.
Examples
With Colour domain-range scale set to ‘Reference’:
>>> with domain_range_scale("Reference"): ... from_range_int(1) array(1.0)
With Colour domain-range scale set to ‘1’:
>>> with domain_range_scale("1"): ... from_range_int(1) array(0.0039215...)
With Colour domain-range scale set to ‘100’ (unsupported):
>>> with domain_range_scale("100"): ... from_range_int(1) array(0.3921568...)