colour.whiteness#
- colour.whiteness(XYZ: ArrayLike, XYZ_0: ArrayLike, method: Literal['ASTM E313', 'CIE 2004', 'Berger 1959', 'Ganz 1979', 'Stensby 1968', 'Taube 1960'] | str = 'CIE 2004', **kwargs: Any) NDArrayFloat [source]#
Return the whiteness \(W\) using given method.
- Parameters:
XYZ (ArrayLike) – CIE XYZ tristimulus values of the sample.
XYZ_0 (ArrayLike) – CIE XYZ tristimulus values of the reference white.
method (Literal['ASTM E313', 'CIE 2004', 'Berger 1959', 'Ganz 1979', 'Stensby 1968', 'Taube 1960'] | str) – Computation method.
observer – {
colour.colorimetry.whiteness_CIE2004()
}, CIE Standard Observer used for computations, tint \(T\) or \(T_{10}\) value is dependent on viewing field angular subtense.kwargs (Any)
- Returns:
Whiteness \(W\).
- Return type:
np.float
ornumpy.ndarray
Notes
Domain
Scale - Reference
Scale - 1
XYZ
[0, 100]
[0, 1]
XYZ_0
[0, 100]
[0, 1]
Range
Scale - Reference
Scale - 1
W
[0, 100]
[0, 1]
References
[CIET14804d], [WS00i], [XRitePantone12], [Wikipedia04c]
Examples
>>> import numpy as np >>> from colour.models import xyY_to_XYZ >>> XYZ = xyY_to_XYZ(np.array([0.3167, 0.3334, 100])) >>> XYZ_0 = xyY_to_XYZ(np.array([0.3139, 0.3311, 100])) >>> whiteness(XYZ, XYZ_0) array([ 93.85..., -1.305...]) >>> XYZ = np.array([95.00000000, 100.00000000, 105.00000000]) >>> XYZ_0 = np.array([94.80966767, 100.00000000, 107.30513595]) >>> whiteness(XYZ, XYZ_0, method="Taube 1960") 91.4071738...