colour.models.ootf_inverse_BT2100_HLG#

colour.models.ootf_inverse_BT2100_HLG(F_D: ArrayLike, L_B: float = 0, L_W: float = 1000, gamma: float | None = None, method: Literal['ITU-R BT.2100-1', 'ITU-R BT.2100-2'] | str = 'ITU-R BT.2100-2') NDArrayFloat[source]#

Define Recommendation ITU-R BT.2100 Reference HLG inverse opto-optical transfer function (OOTF / OOCF).

Parameters:
  • F_D (ArrayLike) – \(F_D\) is the luminance of a displayed linear component \({R_D, G_D, or B_D}\), in \(cd/m^2\).

  • L_B (float) – \(L_B\) is the display luminance for black in \(cd/m^2\).

  • L_W (float) – \(L_W\) is nominal peak luminance of the display in \(cd/m^2\) for achromatic pixels.

  • gamma (float | None) – System gamma value, 1.2 at the nominal display peak luminance of \(1000 cd/m^2\).

  • method (Literal['ITU-R BT.2100-1', 'ITU-R BT.2100-2'] | str) – Computation method.

Returns:

\(E\) is the signal for each colour component \({R_S, G_S, B_S}\) proportional to scene linear light and scaled by camera exposure.

Return type:

numpy.ndarray

Notes

Domain

Scale - Reference

Scale - 1

F_D

[0, 1]

[0, 1]

Range

Scale - Reference

Scale - 1

E

[0, 1]

[0, 1]

References

[Bor17], [InternationalTUnion17], [InternationalTUnion18]

Examples

>>> ootf_inverse_BT2100_HLG(63.095734448019336)  
0.1000000...
>>> ootf_inverse_BT2100_HLG(63.105103490674857, 0.01, method="ITU-R BT.2100-1")
... 
0.0999999...